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SUMMARY 

This research explored the use of Au nanoparticles on molecular imaging and 

cancer theranostics, with focuses on the fabrication of new materials, the incorporation of 

new medical isotope, as well as new labeling and detecting techniques. 

The first part focuses on the synthesis and characterization of PdCu@Au core-shell 

tripods and their application in cancer theranostics. Innovative radiolabeling technique was 

also developed to incorporate Cu-64 into the crystal lattice of the PdCu@Au tripods for 

improved radiolabeling stability. Novel biomarker of C-C chemokine receptor type 5 was 

selected to target triple negative breast cancer. With characteristic localized surface 

plasmon resonance in the near infrared range, positron emission tomography guided 

photothermal therapy was also demonstrated. In addition, the PdCu@Au tripods 

demonstrated a much brighter two-photon luminescence than that from Au nanorods, with 

a 3.6 ± 0.9 times larger two-photon action cross section and comparable quantum yield. 

The second part focuses on the use of Au-199 as a new medical isotope for the 

improvement of imaging quality of single-photon emission computed tomography. With 

Au-199 incorporated into the crystal lattice of nanoparticles improved radiolabeling 

stability was demonstrated.  

The final part demonstrated the use of Arg-Gly-Asp peptide-conjugated Au 

nanorods for radio-sensitization in radio therapy. This radio-sensitization effect was 

proofed to be the result of decreased expression level of αvβ3 integrin and increased G2/M 

arresting in cell cycle. 
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CHAPTER 1. INTRODUCTION 

Cancer poses a great threat to public health worldwide with increasing incidence 

and high mortality rate.[1] Though the spending on research and patient care increases 

dramatically in the past years causing growing burden to the society, the mortality rates 

have shown little improvement for patient with most types of cancer.[2] The newly 

developed therapeutics and combination of standard therapeutics could only provide 

modest contribution to the survival rate and patient’s welfare.[2] On the other hand, statistics 

shows an improved survival rates when the cancer were diagnosed at an early stage. 

Clinical imaging techniques are playing important roles in cancer diagnosis by 

providing precise positional and anatomical information that is critical to the treatment. 

However, the traditional anatomical imaging modalities could provide little biological 

information with unsatisfied sensitivity and selectivity, which brought difficulties to the 

diagnosis and staging of cancer.[3] Imaging modalities such as positron emission 

tomography (PET) and single-photon emission computed tomography (SPECT), possess 

the capability to reveal biological processes at cellular and molecular level, and were 

termed as molecular imaging modalities.[4] In combination with screening approaches, 

molecular imaging could help to detect the molecular alterations, which indicate the 

incidence of cancer, at its curable early stage. This technology also allows the evaluation 

and adjustment of treatment plans when the treatments are still in process. Imaging probes 

with high affinity in selecting molecular targets are needed in molecular imaging to 

generate and amplify the signals required for the imaging instrument.[4] In a typical imaging 

approach, engineered probes are introduced via systematic administration to circulate 
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through the entire body. By binding to the designed molecular targets at a high affinity, the 

probes could concentrate at the lesion enabling the detection of disease. Thus the design 

and development of novel molecular imaging probes would greatly affect the diagnoses on 

both the sensitivity and the selectivity. 

Nanomedicine is a rapidly advancing field of research that is anticipated to bring in 

many new opportunities for more effective diagnosis and treatment of diseases.[5] In cancer 

nanomedicine, imaging probes and therapeutic agents are increasingly integrated with 

nanoparticles engineered with optimal sizes, shapes, and surface properties, to increase 

their solubility, prolong their blood circulation half-life, improve their biodistribution as 

well as targeting selectivity, aiming at the ultimately reduction of side effects. Engineered 

nanoparticles could serve as novel drug delivery system and theranostic platform, helping 

to solve a number of issues associated with conventional therapeutic agents, including their 

toxicity, nonspecific distribution, unsatisfied targeting capability, as well as poor water 

solubility.[5] 

Among the different kinds of nanomedicine, Au nanoparticle-based nanomedicine 

possesses unique properties such as bio-inertness, readily tuned optical properties, as well 

as easily conjugated surface in addition to the shared merits across nanomedicine.[6] Many 

types of engineered Au nanoparticles have been demonstrated as platforms for various 

biomedical applications.[7] The usages of Au nanoparticles in various biomedical 

applications such as optical sensing, optical imaging, drug delivery, and cancer therapy 

have been demonstrated.[6] The use of Au nanoparticles for cancer theranostics in 

combination with traditional medicine has also been extensively investigated. Though 

these various kinds of biomedical applications have been reported for Au nanoparticles, 
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their application in radiology and nuclear medicine is still rarely reported, partially limited 

by the accessibility to the facilities and equipment. 

The current research focuses on the improvement of the properties of 

nanomaterials, by synthesizing new nanomaterials with novel composition and 

morphology. With improved composition and morphology, nanomaterials could obtain 

better biodistribution profiles to effectively detect tumor at a lower dose. Nanomedicines 

are also developed as multi-function platforms capable of carrying out various tasks 

sequentially, to diagnose and treat cancer during the same course of treatment. In that way, 

the benefit of the nanomedicine could be multiplied, and the side effects could be relatively 

reduced, as lower doses would be needed for the same procedures. 

Here, I selectively highlight some of the latest progresses in the field of Au 

nanoparticle-based nanomedicine with the focuses on their synthesis, optical properties, 

radiolabeling methods, as well as their applications in PET imaging, photothermal therapy 

and radiotherapy. The aim of this summary is to provide the reader with basic ideas on the 

current status, instead of a comprehensive review of this field. 

1.1 Synthesis of Au Nanoparticles and Their Properties 

The research of using Au nanoparticle for biomedical applications has experienced 

a rapid advancement as the result of the quick development of solution-phase syntheses of 

Au nanoparticles. Represented by the synthesis of conventional Au nanoparticle, Au 

nanorods, nanocages, and nanoshells, various kinds of Au nanoparticle could be prepared 

with well controlled size, shape at high purity (Figure 1.1).[6] The underlying mechanisms 
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to direct and control the growth of anisotropic Au nanoparticles were also proposed and 

studied. 

1.1.1 Synthesis of Au Nanoparticles 

 

Figure 1.1. A schematic diagram illustrating the structure of a) Au nanospheres, e) 

Au nanorods, i) Au nanoshells,[8] and m) Au nanocages. The transmission electron 

microscope (TEM) image of b) Au nanopheres,[9] f) Au nanorods,[10] j) Au 

nanoshell,[11] and n) Au nanocages.[12] Experimental UV-vis spectra results showing 

the capability of tuning the spectrum of c) Au nanospheres,[9] g) Au nanorods,[13] k) 

Au nanoshell,[14] and o) Au nanocages.[15] The simulation of localized surface plasmon 

of d) Au nanospheres,[16] h) Au nanorods, l) Au nanoshells, and p) Au nanocages.[17] 
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Conventional Au nanoparticles are the first kind of Au nanoparticle ever developed, 

tracing back to the discovery of “fine particles” by Michael Faraday.[18] They are typically 

polycrystalline nanostructure with quasi-spherical shapes. With the absence of perfect-

shaped single crystal Au nanospheres, conventional Au nanoparticles were also termed as 

“Au nanospheres” for a long period of time. Currently, conventional Au nanoparticles are 

prepared by the Turkevich method or Brust method and their variations. In the Turkevich 

method, HAuCl4 is reduced in an aqueous solution by sodium citrate, which also served as 

the colloidal stabilizer.[19, 20] By varying the molar ratio of HAuCl4 to sodium citrate, the 

final product could be prepared at different sizes with reasonable uniformities in size 

distribution and morphology. But these uniformities are largely affected by the pH value 

or the sequence for introducing the reagents.[21, 22] In the Brust method, HAuCl4 is reduced 

by NaBH4 in an organic phase (typically toluene) with thiol (typically dodecanethiol) as 

capping agent.[23] With the help of phase-transfer agent (typically tetraoctylammonium 

bromide) HAuCl4 is dispersed in the organic phase into reverse micelles. The reverse 

micelles could limit the growth of Au nanoparticles and stabilize the as prepared 

nanoparticle from aggregation. The size of the Au nanoparticles produced by this synthesis 

is controlled by the molar ratio between HAuCl4 to the thiol, but affected by the 

temperature and aging time. Though the size of the conventional Au nanoparticles can 

often be tuned in a wild range (upto 180 nm) by additional rounds of seed-mediated growth 

after the initial synthesis, the uniformity of size and morphology is still not ideal.[24] 

Recently, our group established the synthesis of single crystal Au nanospheres with 

well-defined circular shape.[9, 25] In this synthesis, a seed-mediated growth approach is 

employed with initial seeds prepared by reducing HAuCl4 with NaBH4 in the presence of 
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hexadecyltrimethylammonium chloride (CTAC). To prepare Au nanospheres of upto 17 

nm, additional Au is coated by subjecting the initial seeds to additional rounds of 

overgrowth in the solution containing HAuCl4, CTAC, and ascorbic acid (AA). By 

increasing the rounds of overgrowth while controlling the reaction rate by the dropwise 

addition of HAuCl4, Au nanospheres of upto 150 nm could be synthesized with a narrow 

size distribution and good uniformity in morphology. 

The synthesis of anisotropic Au nanoparticles has long been a heated research topic, 

as the growth of anisotropic structure is difficult to be initiated and controlled. Till recently, 

many kinds of method have been proposed for the synthesis of Au nanorods.[6] Among the 

different methods, the seeded-growth approach has become the most popular approach for 

its simplicity in procedure and high product uniformity. Initially developed by Murphy and 

co-workers and improved by El-Sayed and Nikoobakht, the typical synthesis involved two 

major steps: the preparation of initial seeds and the overgrowth of initial seeds to 

nanorods.[26, 27] In the original protocol developed by Murphy and co-workers, the initial 

seeds are prepared by reducing HAuCl4 with NaBH4 in the presence of sodium citrate as 

colloidal stabilizer.[26] In the modified protocol, the sodium citrate is substituted by 

hexadecyltrimethylammonium bromide (CTAB) for a better control of size and 

crystallinity of the seeds.[27] The as prepared initial seeds will then be subjected to 

overgrowth in the growth solution typically containing HAuCl4, AA, CTAB, and AgNO3. 

The aspect ratio could easily be tuned by varying the molar ratio of HAuCl4 to the initial 

seeds and the amount of Ag+ presented in the system. Additional rounds of overgrowth 

could also be employed for the preparation of Au nanorods with higher aspect ratio.[27] 
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The Au nanoshell is the first kind of Au nanoparticle developed with tunable optical 

properties. The synthesis of Au nanoshells involves the coating of Au layer on a dielectric 

core material. As the makes of dielectric core and Au layer are so different, the surface 

modification of core materials and the attachment of Au seeds become the critical step in 

the synthesis. In the well-known synthesis developed by Halas and co-workers, SiO2 

colloidal spheres prepared by the Stöber method are used as core materials for the 

synthesis.[28] An amino-terminated saline (typically aminopropyltriethoxysilane) is 

introduced to functionalize the surface of SiO2 with amino groups for the easy attachment 

of Au nanoparticle seeds. These attached Au seeds could serve as the nucleation sites for 

further deposition of Au via chemical reduction. A mild reductant would typically be used 

to control the rate of the reaction to a low level. With more Au deposited on the nucleation 

sites, the isolated Au patches become to coalesce and finally generate a uniform shell. It is 

worth mention that the Au nanoshells still possess a solid core/shell structure that is less 

favorable for biomedical applications. 

Different from the Au nanoparticles mentioned above, Au nanocages are featured 

with hollow interior and porous walls. This features provides Au nanocages with tunable 

localized surface plasmon resonance (LSPR) peaks, and could be used for the delivery and 

controlled release of drug.[29] The synthesis of Au nanocages was pioneered by Xia group 

along with the development of Ag nanoparticles.[15, 30] With Ag nanocubes as the 

sacrificing templets, Au is deposited on the surface of Ag nanocubes via the galvanic 

replacement reaction at nanoscale. After the formation of completed coated Au nanoboxes, 

holes become to open up at the walls by the dealloy process leading to the formation of Au 

nanocages. During the typical synthesis, HAuCl4 is dropwisely introduced to the 
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suspension of Ag nanocubes with the help of syringe pump, while the spectra are 

continuously monitored by ultraviolet–visible-near infrared (UV-vis-NIR) spectroscopy. 

That allows the tight control over the particle morphology and optical properties. 

1.1.2 Outstanding Properties of Au Nanoparticles 

Besides the properties shared across all the nanoparticle species, Au nanoparticles 

also possess excellent optical and chemical properties associated with the Au element and 

their structures. 

In general, the optical properties of Au nanoparticles include the LSPR properties 

and the photoluminescence properties. For Au nanoparticles containing less than 300 Au 

atoms (~2 nm), they are often termed as Au clusters, as their crystal structures are often 

unstable and undefined.[6] At the same time, their energy structures demonstrate discrete 

energy levels which more or less resemble that of the molecule species. These energy 

structure provides the Au clusters with good photoluminescence properties, which have 

been found valuable in the application of bioimaging and biosensing. For Au nanoparticles 

larger than 2 nm, their discrete energy levels evolve into the band energy structure 

commonly seen in metals.[6] 

The band energy structure presented in Au nanoparticles allows the continuous 

relaxation of excited electron to their ground state, which is, in general, unfavorable to the 

presence of photoluminescence. However, the band structure allows the free movement of 

electron across the metal that promotes the LSPR phenomenon.[6] When an incident light 

shine on to the Au nanoparticle, the LSPR occur as a result of collective oscillation of the 

free electrons in response to the varying electromagnetic field induced by light. When the 
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frequency of incident light matches the natural frequency of the electron oscillation, a 

resonance will occur. By varying the material, dielectric constant of the surroundings, as 

well as the size and morphology of the nanoparticles, the LSPR peak of Au nanoparticles 

could be readily tuned in a wide range to fit the requirement of biomedical applications. In 

general, anisotropic structure with non-spherical, hollow, and nanoshell morphology could 

give out LSPR peaks in the visible to NIR range.[6] With the strong LSPR peaks, these Au 

nanoparticles have found tremendous application in biosensing, imaging, controlled drug 

release, and cancer therapy.[6] 

Recently, researchers also discovered the two-photon and multi-photon 

luminescence properties from the above mentioned plasmatic Au nanostructures.[6, 31] They 

have been employed as contrast agents for two-photon microscopy in both in vitro and in 

vivo applications. However, the underlying connection between the LSPR and two-photon 

luminescence properties is often ignored. It is proofed that, different from the organic dyes 

that absorb two coherent photons at the same time, the plasmatic Au nanorods in fact 

sequentially absorb two photons with an actual intermediate state in between (Figure 

1.2).[32] The actual energy level of the intermediate state is provided by the sp energy band, 

while the LSPR could enhance the absorption of incident photons. 
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Figure 1.2. Fluorescence lifetime assay of Au nanorods (blue trace), flourescein (green 

trace), and coupled Au nanospheres (red trace). The excitation schematic illustration 

of the excitation process of coherent two-photon excitation (left inset) and two 

sequential one-photon excitations (right inset). 

In addition to the optical properties, Au nanoparticles also possess bioinert but 

easily modified surface. In the contest of biomedical applications, the bio-inertness is 

presented as good chemical stability, low reactivity to the molecules in biological systems, 

and low acute toxicity.[6] The inert nature of Au, which is well known for a long period of 

time from the jewelry industry, is still preserved at the nanoscale. At the meantime, the 

inert surface presented on the Au nanoparticles could also be readily modified by the thiol 

containing compounds via the gold−thiolate bond. The gold−thiolate bond holds a relative 

high bond energy of 184 kJ/mol providing a stable binding for the conjugated molecules.[33] 

By varying the chemical groups grafted on the thiol species, we could readily prepare the 

Au surface with desired properties. An outstanding example is the establishment of 

poly(ethylene glycol) (PEG) modification of Au nanoparticles. The presence of PEG 

chains prevents the rapid adsorptions of serine proteins providing a much favorable kinetics 

for prolonged circulation and improved biodistribution profiles.[6, 8] In addition, the PEG 
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coated on the surface of Au nanoparticles could further serve as platform for further 

conjugation of functional motifs (such as antibodies, peptides, and dyes) to introduce and 

improve the functions of Au nanoparticles. 

1.2 Application of Au Nanoparticles in Cancer Theranostics 

After years of development, Au nanoparticles have been utilized in almost every 

field of biomedical application such as: bio-sensing, optical and nuclear imaging, targeted 

delivery and controlled release of drug, cancer theranostics.[6, 8] Due to the larger number 

of published works, I selectively summarize the applications in: 1) two-photon and multi-

photon luminescence imaging; 2) radiolabeling and nuclear imaging; as well as 3) 

photothermal therapy and radiotherapy. 

1.2.1 Application of Au Nanoparticles in Two-Photon Luminescence Imaging. 

The two-photon and multi-photon luminescence effects take the advantage of non-

linear absorption of photons by the Au nanoparticles under high-intensity coherent pulsed 

laser. Comparing to the widely used single-photon excitation confocal microscopy, two-

photon and multi-photon microscopy possess smaller focal points as a result of the 

requirement of high intensity laser. This provides the imaging method with improved axial 

resolution, which could be used for optical section of cells. The laser used for the excitation 

typically has a wavelength in the NIR region in order to let the emission spectra fall into 

the visible range. This range of excitation wavelength also fit into the “transparent 

window” of biological tissue, helping to reduce background signals from autofluorescence 

and to increase the penetration depth in biological tissue. 
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The two-photon microscopy has been used for the tracking of Au nanoparticles 

during the uptake by cells. With the example of Au nanocages, our group studied the uptake 

process of monoclonal antibody (anti-epidermal growth factor receptor, anti-EGFR) 

conjugated Au nanocages by the U87MG glioblastoma cells.[34] With a commercial two-

photon microscope equipped with a Ti:sapphire laser centered at 800 nm, the influence of 

incubation time, incubation temperature, size of the Au nanocages, and the presence of 

antibodies were systematically studied. It was found that anti-EGFR could greatly enhance 

the uptake of Au nanocages by promoting the attachment and internalization of 

nanoparticle via the antibody-antigen interactions and receptor-mediated endocytosis. 

With a good stability and biocompatibility, Au nanocages could be stably labeled into 

living cells for upto 4 weeks, allowing the in vitro tracking of cells. Our group further 

demonstrated the in vivo tracking of human mesenchymal stem cells.[35] Currently, Au 

nanoparticles could be imaged at a single particle level both in vitro and in vivo. 

To avoid the photothermal destruction of cells during the imaging process, the use 

of three-photon excitation for photoluminescence imaging was also explored.[36] By 

exciting the Au nanocages with laser of 1290 nm, the photothermal effect could be greatly 

suppressed as the LSPR peak was averted. The destruction of living cells, represented by 

the blebbing of cell membrane, was only observed with the two-photon microscopy with 

excitation wavelength centered at 800 nm. 

1.2.2 Radiolabeling and Nuclear Imaging Applications of Au Nanoparticles 

As a well-known molecular imaging modality, PET possesses the capability to 

quantify the whole-body distribution of targeted molecules, revealing details about the 
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undergoing biological functions. In the field of nanomedicine, PET has been widely used 

for the evaluation of tumor targeting capabilities, biodistribution profiles, as well as 

pharmacokinetics of nanoparticles.[6] As a typical example, our group compared the 

biodistribution and pharmacokinetics of Au nanocages with two different edge lengths.[37] 

The PEGylated Au nanocages of 30 and 55 nm in edge length were conjugated with 

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with Cu-64. 

Compared to their 55 nm counterparts, Au nanocages of 30 nm in edge length were found 

to have a prolonged blood retention and lower uptake by the mononuclear phagocyte 

system. Accordingly, the 33 nm Au nanocages were also found to demonstrate a high tumor 

accumulation and a centralized intratumoral distribution in a EMT-6 murine mammary 

carcinoma model (Figure 1.3). 

In a typical process, β+ emitting radionuclides are required to covalently bond or 

chelated to the surface of nanoparticles to give out detectable signals. However, the 

stability of radiolabeling and the alternation of surface properties are always concerns for 

the traditional labeling approach.[38] The unstable labeling could result in the detachment 

of radionuclides, giving out higher background signals along with biased biodistribution 

and pharmacokinetics data. In order to overcome these issues, a new radiolabeling 

approach was recently developed to incorporate the radionuclides into the crystal lattice of 

nanoparticles. Recently Liu and co-workers developed the Cu-64 labeled AuCu alloyed 

nanoparticles of 2.5 and 9.4 nm, and evaluated their biodistribution as well as systemic 

clearance properties.[38, 39] The nanoparticles were prepared by the direct reduction of 

HAuCl4 with 64Cu2+ presented in the system. It is found that the AuCu alloyed 

nanoparticles all have good radiolabeling stability in biological environment and could be 
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accumulated in the tumor region via passive targeting. At the meantime, the 2.5 nm alloyed 

particles also exhibit good systemic clearance with up to 77.0 % of the injected dose cleared 

collectively from feces and urine, 48 h postinjection. 

 

Figure 1.3. a) A schematic showing the radiolabeling technology with DOTA chelator, 

and the 64Cu chelated Au nanocages; b) PET/CT images showing the passive targeting 

capability of the 30 nm 64Cu-DOTA-PEG-Au nanocages with EMT-6 tumor model at 

1, and 24 h postinjection. T, tumor; B, bladder. b) Standardized uptake values in 

tumor and muscle tissue at different time points. d) Comparison of standardized 

uptake values between tumor and muscle at different time points. 

However, the controlling of size and morphology of the radionuclide-doped Au 

nanoparticles is still of great challenges. 

1.2.3 Photothermal Therapy and Radiotherapy with Au Nanoparticles 

After the first demonstration of Au nanoparticle-mediated photothermal therapy 

conducted with Au nanoshells in 2003, an increasing number of works have been published 

on the use of Au nanoparticles as transducers for photothermal therapy.[40, 41] In these 

researches, Au nanoparticles are typically engineered with LSPR peaks in the NIR region 
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and large absorption cross sections to minimize the destruction of health tissue while 

optimizing the photothermal generation. With in vivo tumor targeting capability, Au 

nanoparticles could also increase the selectivity in photothermal therapy. El-Sayed and co-

workers demonstrated the use of anti-EGFR antibody conjugated Au nanorods for in vitro 

photothermal therapy.[13] It is proofed that with Au nanorods on the surface of cancer cells, 

the power density of incident laser required for photothermal destruction was greatly 

reduced from over 76 W/cm2 to 25 and 19 W/cm2 for HSC cells and HOC cells, 

respectively. In another study, our group demonstrated the in vivo photothermal therapy of 

human glioblastoma with the use of PEGylated Au nanocages.[42] After systematic 

administration of PEGylated Au nanocages, photothermal treatment was conducted under 

laser irradiation at 0.7 W/cm2. The local temperature in the tumor lesion were rapidly 

elevated to over 50 °C leading to a decrease of tumor metabolic activity by 70%. The 

mechanism of photothermal destruction of cells was also studied. It has been demonstrated 

that the cell membrane cavitation could be the main cause of cell death. By disrupting actin 

filaments, and further, the connections between the cell membrane and cytoskeleton, cells 

were leaded into apoptosis after treatment.[43] 

Similar to the role in photothermal cancer therapy, Au nanoparticles have also been 

employed to enhance the therapeutic effects of radiotherapy.[6] In general, radiotherapy 

takes effect by the direct or indirect ionization of DNA, causing irreversible damages. In 

the indirect approach, which is the dominating approach in X-ray-based radiotherapy, 

photoelectrons and Auger electrons were generated as a result of the interaction of X-ray 

with matter. These free electrons could ionize the surrounding water molecules producing 

free radicals, which then ionize and damage the cellular DNA. Taking advantage of the 
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high Z-number of Au, Au nanoparticles could enhance the attenuation of X-ray producing 

more free electrons. However, after the publication of many works the detailed mechanism 

of the radiosensitizing effect and the resistance from the cells remain unclear. 

1.3 Scope of This Work 

Despite the large number of pre-clinical research and enormous investment of 

research fund, only a few Au nanoparticle-based medicines have been approved for clinical 

trials.[7] The application in real-world clinics is still limited by several issues. First, the 

unsatisfactory biodistribution was found for most kinds of Au nanoparticles, resulting in 

relatively low accumulation in tumor lesion and inevitably significant accumulation in 

major organs. Second, Au nanoparticles with a hydrodynamic diameter larger than 8 nm 

could not be effectively cleared from body. Third, the long-term effects of Au nanoparticles 

still demand throughout investigation. The concern of adverse effect brought by the 

clearance and long term accumulation of the off-targeted nanomedicine are still needed to 

be addressed. The decision of whether to put a nanomedicine into clinical use has become 

a tradeoff between the clinical benefit and the side effect. 

This dissertation was dedicated to the integration of molecular imaging technology 

and the latest nano-chemistry with focuses on nanoparticle engineering, incorporation of 

novel isotope, as well as the development of new tumor targeting technology. Work 

accomplished in this dissertation made important progresses towards the ultimate goal of 

clinical application of Au nanoparticle for cancer theranostics. To achieve this goal, plenty 

of effort still needs to be devoted. 
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In chapter 2, I developed Cu-64 doped PdCu@Au tripods for PET-guided 

photothermal treatment of triple negative breast cancer. I developed the controlled 

synthesis of PdAu@Cu tripods and demonstrated their excellent optical properties and 

photothermal generation capability. I also stably labeled Cu-64 into the crystal lattice of 

the tripods giving them the capability PET probes. A high tumor accumulation was also 

observed in targeting a new biomarker (C-C chemokine receptor 5, CCR5) in triple 

negative breast tumor model. 

In chapter 3, I studied the use of PdCu@Au tripods for two-photon luminescence 

imaging. Based on our current understanding on the connection between the energy 

structure, LSPR property, and the two-photon luminescence property, I verified the 

existence of bright two-photon luminescence in PdCu@Au tripods. I benchmarked their 

two-photon luminescence property to the organic dyes and Au nanorods, finding a much 

larger two-photon action cross section. 

In chapter 4, I develop Au-199 integrated Au nanoparticles for targeted SPECT 

cancer imaging. I chemically fixed Au-199 into the lattice of Au nanospheres for an 

improved radiolabeling with higher stability. After the measurement of labeling rate and 

radiochemistry purity, I also tested the in vivo tumor targeting capability of labeled Au 

nanospheres. I introduced Au-199 as a suitable medical isotope for SPECT imaging as its 

emitted γ photon could be imaged with the commercial available SPECT with the existing 

setting for 99mTc. 

In chapter 5, I developed Arg-Gly-Asp (RGD) peptide-conjugated Au nanorods for 

radio-sensitization in radio therapy. I obtained highly uniform RGD-conjugated Au 
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nanorods, and testified their capability to enhance therapeutic effect of radiotherapy via in 

vitro radiotherapy. I further studied the process and mechanism of the radiosensitization 

effect. It is found that the RGD-conjugated Au nanorods could reduce the resistance to 

radiotherapy by lowering the expression level of αvβ3 integrin, while increasing the portion 

of cells arrested in G2/M phase. 

In chapter 6, I summarize this dissertation by highlighting the innovations of the 

works presented in the dissertation, and illustrate some of the potential impacts of these 

works. Future works are also proposed in two directions: the further integration of 

functionality, and the fabrication of biodegradable Au nanomaterials. These two directions 

are dedicated to the elevation of clinical benefit and the reduction of side effects, 

respectively. 
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CHAPTER 2. CU-64 DOPED NANOTRIPODS FOR PET-GUIDED 

PHOTOTHERMAL TREATMENT OF CANCER 

In this chapter, I elaborate the innovative works around the controlled synthesis of 

PdCu@Au core-shell tripods. As the anisotropic Au nanostructures are difficult to be 

prepared at high purity, the PdCu@Au tripods are the first in their kind, having a novel 

tripod structure. With the development of new material, I successfully integrated the PET 

contrast enhancement capability to this material by incorporating Cu-64 into the crystal 

lattice of the nanoparticles. I then demonstrated the use of PdCu@Au tripods as both 

contrast agents for PET imaging and photothermal transducers for photothermal therapy of 

cancer, through the PET guided photothermal therapy of triple negative 4T1 tumor. 

2.1 Introduction 

One of the research frontier in the field of Au nanoparticle-based nanomedicine is 

the syntheses of Au nanoparticles of new morphology, aiming at the optimization of their 

properties according to the requirement of various applications. Associated with tunable 

LSPR peaks, anisotropic Au nanoparticles (e.g. Au nanorods) have attracted extensive 

research attentions on their controlled synthesis and applications.[1-3] As outstanding 

examples of anisotropic Au nanoparticles, branched Au nanoparticles, such as stars and 

flowers, have been widely explored in surface-enhanced Raman scattering (SERS) as the 

electromagnetic field could be greatly enhanced at their tips.[2, 4] With a structural similarity 

between the single tip/arm of branched Au nanoparticles and Au nanorods, branched Au 

nanoparticles often possess LSPR peaks that could be feasibly tuned into NIR region 
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similar to that of Au nanorods.[5] That property facilitated their in vivo applications as this 

LSPR peak matches the “transparent window” of human tissues, helping to achieve a 

deeper penetration for optical imaging and photothermal therapy.[6, 7] In addition, branched 

Au nanoparticles are also observed to have large optical cross section, which is orders of 

magnitude higher than that of organic dyes, at the resonance condition of LSPR. Taken 

together, their extraordinarily LSPR properties, tunable peak and larger optical cross 

section, greatly facilitated their applications as theranostic agents in bio-imaging, delivery 

and triggered release of drug, as well as photothermal cancer treatment.[8, 9, 10, 11] 

Apart from the optical properties, the biodistribution profiles and pharmacokinetics 

of Au nanoparticle-based cancer nanomedicine were also greatly affected by the 

morphology of the Au nanoparticles. Their tumor targeting capability, intratumoral 

distribution, as well as toxicity will, in turn, be affected.[2, 12, 13] that makes the preparation 

of branched Au nanoparticles more attractive for biomedical applications. Although 

significant research effort has been dedicated, the controlled synthesis of branched Au 

nanoparticles remains to be challenging for solution phase-synthesis.[1] The typical 

synthesis involves the initiation of anisotropic growth at multiple sites or the aggregation 

of particle seeds, before the directed growth of arms. Still, the directed growth of the 

tips/arms may often require the help from CTAB via a similar mechanism of the growth of 

Au nanorods, which would leave highly toxic residues.[1-3] 

In spite of the enormous number of works published on Au nanoparticles, the 

radiolabeling techniques of Au nanoparticles still require further research attention. Tough 

having unique LSPR peaks and large optical cross sections for optical imaging, a stable 

radiolabeling is always necessary so that the nanoparticles could be tracked in vivo using 
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clinical accessible nuclear imaging modalities such as PET and SPECT. The most widely 

used radiolabeling technology is to chemically bond or chelate radionuclides with the help 

of functional compounds or chelating ligands. Though radionuclides could be labeled to 

Au nanoparticles of any size and shape via this approach, the stability of radiolabeling 

always remains as a concern.[14] In recent works, radionuclides like Cu-64 has been 

reported to be directly doped into the crystal lattice of Au nanostructures such as Au 

nanospheres and clusters for an improved radiolabeling stability.[15, 16, 17] However, the 

morphology of Cu-64 doped Au nanoparticles can hardly be controlled to have an 

anisotropic structure. And the Cu-64 radionuclides could still be leached out as de-alloy 

could happen to the Cu atoms on the surface of particles. 

In this chapter, I demonstrated the facile preparation of PdCu@Au core-shell 

tripods and their use as multifunction theranostic agents for PET guided photothermal 

therapy. The PdCu@Au tripods were prepared via a seed-mediated growth approach to 

have an average arm length of 42 nm. The PdCu bimetallic tripods recently developed by 

our group were employed as the templets for the conformal coating of Au.[18] The coating 

of Au leads to the formation of the featured LSPR peaks, while enclosed the Cu atoms into 

the cores protecting them from de-alloying. By varying the thickness of Au coating layer, 

the LSPR peaks of PdCu@Au tripod could continuously be tuned from 1000 to 800 nm. 

As the incorporation of Cu-64 (half-life = 12.7 h, β+ = 17%) was achieved by partially 

substituting CuCl2 precursor with 64CuCl2 directly during the synthesis of PdCu bimetallic 

tripods, this labeling approach provides PdCu@Au tripods with superior stability for 

accurate PET imaging and the capability for a number of theranostic applications.[15, 13, 16, 

17, 19] 
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Aside from the great reduction of mortality rate for certain types of cancer, new 

cancer biomarkers are still needed to improve the diagnostic accuracy, and to monitor 

cancer progression for personalized medicine with the help of molecular imaging.[20, 21, 22] 

Among the various cancer biomarkers, the CCR5 is of great potential to be a theranostic 

target, as the role of C-C chemokine ligand 5 (CCL5)/CCR5 axis in promoting cancer 

progression has recently been proofed.[23-25] As a cancer progression biomarker, they are 

clinically testified to be up-regulated in both primary tumor lesion and the metastases sites, 

especially in triple negative breast cancer.[26, 27] In order to enable the PdCu@Au tripods 

with better tumor targeting efficiency, I conjugated a ligand (D-Ala1-peptide T-amide, 

DAPTA) to the surface of tripods to actively target triple negative cancer.[28] I further 

assessed the biodistribution profiles and tumor targeting capabilities of the targeted 

PdCu@Au tripods in comparison to their non-targeted counterparts in 4T1 triple negative 

breast cancer mouse model. The use of this novel class of Au nanoparticle as a 

multifunctional platform for PET guided photothermal cancer treatment was also 

demonstrated. 

2.2 Results and Discussions 

2.2.1 Synthesis and Characterization of PdCu@Au Tripods 
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Figure 2.1. The morphology and LSPR property of PdCu@Au tripods. a) A schematic 

illustration of the structure of PdCu@Au tripod. b) The TEM image showing the 

PdCu@Au tripods obtained by conformal coating of Au by reacting 120 mL 0.5 mM 

HAuCl4 with 1 mL of PdCu tripods. Panel (c-f) show the TEM images of individual 

tripods at different stage of Au coating by varying the amount of 0.5 mM HAuCl4 

introduced to each 1 mL of PdCu tripods. The amount of HAuCl4 corresponding to 

panel c-f are 0, 40, 80, and 120 mL, respectively. g) The UV-vis-NIR spectra 

corresponding to the samples of c-f, showing a readily tuned longitudinal LSPR peak 

from 1000 to 800 nm. 

As shown in Figure 2.1a, the PdCu@Au tripod possesses a PdCu bimetallic core 

with a layer of Au conformably coated. The TEM image of a typical sample are 

demonstrated in Figure 2.1b. To better control the morphology of PdCu@Au tripods, I 

employed a two-step process in the synthesis that starts with the preparation of PdCu 

bimetallic tripods, followed by the conformal coating of Au layers via chemical deposition. 

The PdCu bimetallic tripods used in the experiment, which have uniform size and arm 

number, were first prepared via a synthesis recently reported by our group.[18] In this 

synthesis, the chemical reduction of Na2PdCl4 by AA was conducted in aqueous solution 

containing CuCl2 and KBr, with poly(vinyl pyrrolidine) (PVP, MW ≈ 55,000) as colloidal 
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stabilizer at 80 °C. The arm length of the PdCu tripods could be controlled by varying the 

amount of KBr as well as the reaction time.[18] In this study, I focus on the use of PdCu 

tripods with arm length about 25 nm as they can control the overall lateral dimension below 

50 nm while maintaining a good uniformity in size and shape. As shown in Figure 2.2, the 

as prepared PdCu tripods were measured to have an average length (l) of 24.8 ± 4.6 nm 

along with an average diameter (d) of 5.8 ± 0.4 nm for their arms. For the incorporation of 

Cu-64, trace amount of 64CuCl2 with controlled radioactivity was introduced to the 

aforementioned synthesis while keeping all other experimental conditions the same. Excess 

radioactivity was washed off before Au coating. 

 

Figure 2.2. TEM image of the non-radioactive PdCu alloy tripods. The arms of PdCu 

tripods are uniform in length and diameter. 

The as prepared PdCu tripods were then subjected to conformal coating of Au by 

titrating HAuCl4 into the aqueous suspension of PdCu tripods in the presence of AA and 

PVP. With the dropwise addition of HAuCl4, the thickness of the Au coating layer 
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increased gradually up to a thickness of about 8 nm. By controlling the amount of HAuCl4 

solution (0.5 mM) introduced to each 1 mL of PdCu tripods, a series of TEM images were 

taken to illustrate the morphology change of the tripods during a typical coating process 

(Figure 2.1, c-f). During the coating process, the tripod morphology PdCu tripod templets 

could be preserved. However, limited to the preferential deposition of Au atoms on the tips 

and the low surface diffusion rate, the arms of tripods became tapered along with the Au 

coating. At the same time, LSPR peaks of tripods began to show up with a transverse peak 

at ca. 530 nm and a longitudinal peak shifting from ca. 1000 nm to ca. 800 nm, along with 

the titration process (Figure 2.1g). This shifting LSPR peak could also be used to monitor 

the extent of reaction when the UV-vis-NIR spectra were frequently monitored during the 

reaction. In the present study, I prepared PdCu@Au tripods with a longitudinal LSPR peak 

at ca. 810 nm by immediately stopped the titration when the longitudinal LSPR peak 

reached 810 nm. This titration process typically took 120 mL of 0.5 mM HAuCl4 for the 

conversion of each 1 mL of PdCu tripod templets. Observed by TEM, these PdCu@Au 

tripods were found to have an average arm length (l) about 42.2 ± 6.4 nm and an average 

arm diameter (d) of 21.7 ± 4.5 nm. 

To quantify the absorption to extinction ratio of the PdCu@Au tripods, I further 

calculated the LSPR spectra of the tripods using the three-dimensional finite-difference 

time-domain (3D-FDTD) simulation.[64] In the numerical model, the PdCu tripod was set 

to hold an arm length of 25 or 35 nm with an arm diameter of 6 nm. As shown in Figure 

2.3, with the coating layer varied from 2 to 8 nm, their longitudinal mode of LSPR peaks 

was observed to blue-shift from over 100 nm to visible range, which is in good agreement 

with the experimental observation. However, we only observed a broad longitudinal mode 
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of LSPR peaks as the result of polydispersity and random orientations of the particles in a 

real sample. The absorption to extinction ratio of the PdCu@Au tripod were also 

determined to be about 90 %, at 810 nm by the numerical result, indicating a great potential 

of biomedical application of photothermal cancer therapy.[2, 3, 11] 

 

Figure 2.3. The extinction spectra calculated using 3D-FDTD method. The model of 

PdCu@Au tripods is set to have different arm lengths (l), with thickness in Au coating 

(t). The spectra are obtained with l=25 nm (a) and l=35 nm (b), at various t values. 

The diameter of the arms of PdCu bimetallic tripod (d) was set to 6 nm for all 

calculation. 

To assess the in vitro labeling efficiency and chemical purity of Cu-64 doped 

PdCu@Au tripods, I measured the free 64Cu2+ in the suspension of Pd64Cu@Au tripods 
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using radioactive thin layer chromatography (Radio-TLC). As shown in Figure 2.4, no free 

64Cu2+ ions could be observed directly from Radio-TLC trace. It is indicated that the 

incorporation of Cu-64 was successful, thus all the radioactivity was found only in the 

tripods. The sample of Cu-64 doped Pd64Cu@Au tripods was also observed using TEM 

after the complete decay of radionuclides to directly analyze their morphology. As 

demonstrated in Figure 2.5, in a period of up to 90 days, the structural integrity and 

morphology of PdCu@Au tripods maintained, when preserved in Dulbecco’s phosphate 

buffered saline (DPBS), showing no noticeable changes during the decay. From the TEM 

images, the arm length and diameter of the decayed Pd64Cu@Au tripods were measured to 

be 44.5 ± 5.8 nm and 21.5 ± 1.9 nm, respectively, by averaging 50 independent measures. 

These measures were comparable to the values obtained from the non-radioactive 

PdCu@Au tripods synthesized with the same procedure without the introduction of 

64CuCl2 (Figure 2.1b). This result also demonstrated that the formation of complete 

conformal coating of Au could help to prevent the de-alloying process from happening, by 

isolate the PdCu bimetallic cores from the oxidization and dissolution caused by the 

environment. This Au coating also provides the tripods with an inert while easily 

functionalized surface for further conjugation.[8, 12] 
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Figure 2.4. The Radio-TLC result of the Cu-64 doped Pd64Cu@Au tripods (shown as 

DAPTA-PEG-Pd64Cu @Au64Cu). The trace shows a single peak with low moving 

distance indicating that the radioactive Cu-64 was completely enveloped in the 

tripods with no free or dissociated Cu-64 observed.  

 

Figure 2.5. The TEM images showing the typical sample of Cu-64 doped PEGylated 

Pd64Cu@Au tripods after 90 days of decay (170 half-life) in DPBS. Protected by the 

Au coating layer, the integrity and morphology of Pd64Cu@Au were fully retained. 
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2.2.2 Evaluation of Photothermal Effect In Vitro 

To demonstrate the photothermal generation capability and to assess their 

efficiency, I quantified the photothermal heating profiles of aqueous suspension of 

PdCu@Au tripods for different particle concentration under various laser irradiation 

conditions. In this study, PdCu@Au tripods were dispersed in 100 µL of DPBS to a final 

concentration of 0−400 pM and transferred into different wells on a 96-well plate. The 

suspensions were then irradiated with a diode laser with central wavelength at 808 nm and 

power intensity varied in the range of 0.25−1.0 W/cm2. The increase in temperature was 

monitored simultaneously by an infrared camera (Infrared Camera, Beaumont, TX). The 

photothermal heating profiles were obtained as Figure 2.6. In a typical process, the 

temperature of the PdCu@Au suspension raised rapidly at the beginning of irradiation 

before leveling off at over 5 min. The photothermal heating of PdCu@Au suspension also 

shows a power and concentration dependent feature. Under the power intensity of 1 W/cm2, 

a large rise in temperature was observed from samples containing 100 and 400 pM 

PDCu@Au tripods with a temperature increase of 11.8 and 33.4 °C, respectively. This 

result suggests that the PdCu@Au tripods possess the photothermal generation capability 

to drastically elevate the local temperature in biological tissue causing irreversible damages 

to cancerous cells through hyperthermia (41−48 °C) or ablation (>48 °C). [30] Comparing 

to the data harvested at same experimental conditions, I benchmarked the photothermal 

generation capability to that of Au nanocages[31] and Au nanohexapods,[32] previously 

reported by our group. It is shown that PdCu@Au tripods hold a comparable photothermal 

generation capability to that of Au nanocages as well as hexapods, which could be of great 

potential for biomedical applications. 
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Figure 2.6. The assessment of photothermal generation capability of PdCu@Au 

tripods. a) Plots of the temperature at different laser intensity, showing the power 

dependent behavior for aqueous suspensions containing 200 pM PdCu@Au tripods. 

b) Plots of the temperature at different particle concentration, showing the 

concentration dependent behavior for aqueous suspensions irradiated by laser at 

power density of 1 W/cm2. 

2.2.3 Evaluation of Cell Toxicity and Cell Uptake In Vitro 

Before using PdCu@Au tripods for in vivo applications, I assessed their 

cytotoxicity in vitro with a standard cell proliferation assay using 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) on 4T1 breast cancer cells. The cell viability 

was quantified after 24 h of incubation for both PEGylated PdCu@Au tripods and DAPTA-

conjugated tripods, at various particle concentration in the range of 6.25 to 800 pM. As 
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shown in Figure 2.17, compared with the control group, no significant decrease of cell 

viability was observed for both experimental groups up to a high particle concentration of 

400 pM. This cytotoxicity level is also comparable to other kinds of Au nanoparticles 

reported previously.[3] At a higher concentration, the DAPTA-conjugated group 

demonstrates a slightly lower cell viability, but the difference between the two groups is 

not statistically significant. It is worth pointing out that the Pd and Cu presented in the 

PdCu@Au tripods are often considered to be heavy metals that are highly toxic to organism 

when they are oxidized and leached as ions. However, the complete coating of Au layers 

could help to protect the PdCu bimetallic cores, preventing them from oxidization and de-

alloy. The short-term cytotoxicity could then be reduced to a negligible level. 

 

Figure 2.7. Cell proliferation test of 4T1 breast cells. Cell viability was derived by 

normalizing the cell viability from PEGylated and DAPTA-conjugated groups to the 

control group, after 24 h of incubation. Error bars stands for the standard errors with 

n = 3. 
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Following the assessment of cytotoxicity, I further tested the in vitro targeting 

efficiency of DAPTA-conjugated PdCu@Au tripods to 4T1 triple negative breast cancer 

cells. By incubating with tripods of both kinds of surface modification side by side on the 

same 24-well plates, the cells were allowed to uptake the PdCu@Au tripods for different 

periods of times. To calculate the particle concentration, the metal contents were measured 

by inductively coupled plasma mass spectrometry (ICP-MS) after the cells were washed, 

harvested, and digested by aqua regia. It is shown that the DAPTA-conjugated PdCu@Au 

tripods have a high cancer targeting efficiency (p < 0.001, n = 3), with 19.5 ± 1.1 × 103 

particles/cell at 24 h of incubation. This value almost triple the amount of particles 

observed in the uptake of PEGylated group that is 7.3 ± 1.7 × 103/cell (Figure 2.8). This 

result confirms the enhancement in tumor targeting capability brought by the conjugation 

of DAPTA toward the CCR5. 

  

Figure 2.8. A comparison of the uptakes of the non-radioactive non-targeted and 

CCR5-targeted tripods core-shell by 4T1 cells after incubation for different periods 

of time. Error bars are standard errors with n = 3. ** p < 0.005. 
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2.2.4 Evaluation of Biodistribution 

The in vivo biodistribution and tumor targeting experiment was then conducted with 

PdCu@Au tripods with or without the conjugation of DAPTA peptides in 4T1 tumor-

bearing mice models. Figure 2.9 demonstrated the biodistribution profiles of DAPTA-

conjugated PdCu@Au tripods along with their non-targeted counterparts at different time 

points. Both kinds of the nanoparticles showed good blood retention for a time period up 

to 24 h, post intravenous injection through tail vein. The PEGylated PdCu@Au tripods 

demonstrated a higher blood retention at all three time points 36.9 ± 0.7 percentage of the 

injected dose per gram of tissue (%ID/g) and 33.5 ± 2.6 %ID/g at 1 and 4 h, respectively. 

The corresponding blood retention was measured to be 31.0 ± 1.6 %ID/g and 24.3 ± 1.8 

%ID/g for the DAPTA-conjugated tripods. At the same time, a significant clearance from 

mononuclear phagocyte system (liver and spleen) was also observed for tripods with both 

kinds of surface modification, in consisting with other kinds of Au nanoparticles. 
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Figure 2.9. Biodistribution and tumor targeting of the Cu-64 doped Pd64Cu@Au 

tripods with or without DAPTA peptide conjugation a t1 (a), 4 (b), and 24 h (c) post 

injection. 

As shown in Figure 2.9 a and b (right panels), PdCu@Au tripods with both kinds 

of surface modifications were observed to have comparable tumor uptake as well as the 

tumor to muscle ratios at 1 and 4 h post injection. This result is in good agreement with our 

previous study, that the necessary time duration to establish a good passive targeting 

through the enhanced permeation and retention (EPR) effect is 4-6 h.[14] The effect of active 

targeting was only observed to bring modest improvement to the targeting of cancer, with 
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5.19 ± 0.47 %ID/g (vs. 4.64 ± 0.80 %ID/g for non-targeted tripods) accumulated in tumor 

at 4 h. It is also demonstrated that the main mechanism for the tumor uptake of PdCu@Au 

tripods is still the EPR effect in the first few hours after the injection, regardless of their 

surface modification. However, the active targeting effect brought by DAPTA peptides 

was clearly demonstrated at 24 h, with 11.2 ± 0.22 %ID/g of tripods accumulated in the 

tumor sites, significantly higher than that of the non-targeted groups (6.83 ± 0.42 %ID/g) 

or the targeting efficiency for other types of non-targeted Au nanoparticles.[3] Importantly, 

the selectivity in tumor targeting was also improved by DAPTA conjugation that could be 

observed from the elevated tumor-to-blood ratio of 5.70 ± 2.63 and tumor-to-muscle ratio 

of 28.6 ± 5.27 of the DAPTA-conjugated PdCu@Au tripods. These number were 2.1-fold 

and 4.4-fold higher than the measure from PEGylated tripods (1.82 ± 0.43, p < 0.05 and 

5.28 ± 1.45, p < 0.005, respectively), clearly illustrating the feasibility using CCR5 as new 

cancer biomarker, as well as the effectiveness of the targeting technology.  

2.2.5 PET Imaging 

In addition, I further preformed the in vivo PET imaging to quantitatively assess the 

feasibility using Pd64Cu@Au tripods as contrast agents for cancer diagnosis. The 

experiment was conducted on 4T1 tumor bearing mice models 24 post injection. Both 

groups of the PdCu@Au tripods were find to highly accumulate in tumor sites as well as 

liver and spleen in agreement with the biodistribution data mentioned beforehand (Figure 

2.10a.). The non-targeted PdCu@Au tripods demonstrated a heterogeneous distribution in 

tumor with a standard uptake value (SUV) of 1.47 ± 0.16 and tumor-to-muscle ratio of 4.84 

± 0.67 (Figure 2.10 b and c, respectively). With DAPTA conjugated to the PdCu@Au 

tripods, the SUV on tumor site was increased by 50% to 2.18 ± 0.16 comparing to their 



www.manaraa.com

 40 

PEGylated counterpart. The selectivity in tumor targeting was also increased, represented 

by the high tumor-to-muscle ratio of 32.7 ± 4.19, which was almost seven times as high as 

that from the PEGylated tripods. The outstanding tumor targeting selectivity of the 

targeting technology was also testified by a competitive blocking experiment where 

DAPTA-conjugated non-radioactive tripods were injected along with the DAPTA-

conjugated radioactive tripods at a molar ratio of 9 : 1 (non-radioactive : radioactive). The 

tumor uptake and tumor-to-muscle ratio were significantly reduced (1.59 ± 0.05, p < 0.005 

and 7.89 ± 1.40, p < 0.001, respectively), which confirmed the feasibility as well as the 

high efficiency and selectivity of using DAPTA peptides to target novel cancer biomarker 

of CCR5. It is worth pointing out that there were very low signals from the bladder of all 

mice indicating a reduced renal clearance during the entire study and outstanding stability. 

This result also testifies the reliability of the radiolabeling strategy reported previously.[33] 
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Figure 2.10. Micro PET/CT images of 4T1 tumor-bearing mouse injected with a) Cu-

64 doped DAPTA-conjugated Pd64Cu@Au tripods (left); Cu-64 doped PEGylated 

Pd64Cu@Au tripods (middle); DAPTA-conjugated Pd64Cu@Au tripods with 9 times 

of non-radioactive counterpart as blocking (right). Each mouse was injected with 3.7 

MBq radionuclides. PET scanning was performed at 24 post-injection. T: tumor; L: 

liver. b) The SUV in tumor sites calculated from the PET/CT images by summing up 

the SUV in selected region of interest. c) Tumor-to-muscle SUV ratios calculated from 

the PET/CT images. * p < 0.05; *** p < 0.001. 

As the intratumoral distribution could greatly affect the drug delivery efficiency of 

nanoparticles, I further assessed the intratumoral distribution of the Cu-64 doped 

Pd64Cu@Au tripods using autoradiography. Tumors were collected from the mice after 

PET imaging at 24 h post injection and sectioned into 40 μm slices. As shown in Figure 

2.11, the autoradiography images showed a heterogeneous intratumoral distributions for 
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PdCu@Au tripods with or without DAPTA conjugation, in good consistence with the 

results revealed by PET images.  

 

Figure 2.11. The heterogeneous intratumoral distributions shown by auto-

radiography of the tumor slices. a) DAPTA-conjugated PdCu@Au tripods, and b) 

non-targeted PEGylated tripods. 

2.2.6 CCR5-Targeted Photothermal Cancer Treatment Guided by PET Imaging 

As a critical next step for theranostic agents, the use of imaging result as guidance 

to the treatment needs to be demonstrated. Following this direction, I illustrated the 

photothermal therapy of cancer under the guidance of CCR5-targeted PET imaging in 4T1 

tumor bearing mice model. After the PET imaging at 24 h post-injection, the tumor bearing 

mice injected with 0.47 mg radioactive and 4.23 mg non-radioactive DAPTA-conjugated 

PdCu@Au tripods were subjected to photothermal treatment. According to the quantitative 

PET imaging result, about 0.33 ± 0.08 mg of PdCu@Au tripods could be delivered to tumor 

site, given the tumor uptake of 7.29 ± 0.23 %ID/g. As shown in Figure 2.12 a, the whole 

body thermographic images taken by IR camera reveals a quick increase of temperature at 

the tumor site under irradiation of 808 nm laser at 1.2 W/cm2. After 2 min of laser 
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irradiation, the temperature at the tumor sites dramatically increased by 21.8 °C and 

reached 60.7 ± 2.3 °C after 3 min (Figure 2.12b). This in vivo photothermal heating profile 

was much better comparing to our previous report on other kinds of Au nanoparticles.[3] At 

the same time, the saline injected control group only showed a modest increase in 

temperature (5.7 ± 2.5 °C) even after 10 min of irradiation. 

 

Figure 2.12. a) Whole body thermographs of the tumor-bearing mice during the 

process of photothermal therapy. The mice were either administrated with DAPTA-

conjugated PdCu@Au tripods or saline. b) The photothermal heating profiles 

quantified from the thermographs, showing the temperature increase on tumor sites 

as a function of irradiation time. The power density of laser was 1.2 W/cm2. Error 

bars stands for the standard errors from 3 mice. 

The treatment effect of PET guided photothermal therapy were evaluated by PET 

imaging of 18F-flourodeoxyglucose (18F-FDG) to assess the tumor metabolism at 48 h post 

irradiation. The DAPTA-conjugated PdCu@Au tripod treated mice were shown to have a 

decreased tumor uptake of 18F-FDG comparing to the saline injected control group (Figure 
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2.13a). By quantification of the SUV from PET images, the tumor bearing mice treated by 

DAPTA-conjugated tripods demonstrated a five-times lower (p < 0.005, n = 3) uptake of 

18F-FDG (0.13 ± 0.02), in contrast to that of the saline injected control mice (0.82 ± 0.21). 

This therapeutic effect evaluated by 18F-FDG PET/CT was comparable to that reported 

previously using other kinds of Au nanoparticles.[3] However, this comparable treatment 

effect was achieved by DAPTA-conjugated PdCu@Au tripods with about 60 % less dosage 

of particle, in terms of mess dose, indicating an improved tumor targeting efficiency via 

the use of CCR5 as novel cancer biomarker and DAPTA as targeting ligand. Taken 

together, the DAPTA-conjugated PdCu@Au tripods possess comparable photothermal 

conversion efficiency to other kinds of Au nanoparticles,[34-36] along with a 50-60 % higher 

tumor uptake than their PEGylated counterparts in biodistribution and PET imaging, I 

demonstrated the proof-of-concept study of the use of CCR5 as novel cancer biomarker for 

the diagnosis and treatment of triple negative breast cancer in mice 4T1 breast cancer 

model. Future study should focus on the improvement of targeting efficiency as well as the 

optimization of treatment protocols aiming at the further reduction of the dose needed for 

PET imaging and cancer treatment. 
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Figure 2.13. a) 18F-FDG PET/CT imaging showing the metabolism of 4T1 triple 

negative breast cancer after photothermal treatment. A lower uptake of 18F-FDG is 

shown in the mice administrated with DAPTA-conjugated tripods than that from the 

saline injected control group. b) The SUV of 18F-FDG obtained from the PET/CT 

images with n=3. ** p < 0.005. 

2.2.7 Biological Assessments 

To verify the existence and assess the expression level of CCR5 on the 4T1 tumor 

model, I further preformed the biological assessments. As shown in Figure 2.14 a, the 

hematoxylin and eosin (H&E) staining shows the morphology of cancerous cells in the 

tumor tissue collected after 2 weeks of implantation. The up regulation of CCR5 was found 

on cell membranes and in nuclei indicated by the immunohistochemistry shown in Figure 

2.14 b. This up regulation was also quantified by western blot and RT-PCR against the β-

actin at 2 and 4 weeks post implant (Figure 2.14, c and d). The expression level of CCR5 

was find to dramatically increased during the progression of tumor demonstrating a great 

potential to be a biomarker for cancer progression. 
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Figure 2.14. Biological data showing the up regulation of CCR5 in 4T1 tumor. (a) The 

morphology of 4T1-Luc primary cancer cells shown by H&E staining at 2 weeks. (b) 

Immunohistochemistry staining of tumor cells for CCR5 (brown) and hematoxylin 

(blue) at 2 weeks. The expression of CCR5 was shown at both the membranes and 

nuclei of the cells. (c) The elevated expression of CCR5 verified by western blot in 4T1 

tumor cells. (d) Quantitative RT-PCR data showing the increasing expression of 

CCR5 along the cancer progression in 4 weeks. Data was normalized against the 

expression of β-actin. 

According to current research, CCL5 promotes the progression of diseases by 

recruiting inflammatory cells and modulating their activities through the interaction with 

CCR5.[37-40] As shown in preclinical studies, the pulmonary metastasis could be suppressed 

by antagonist blocking of CCR5, indicating a great potential on their use as therapeutic 

agents in addition to the role of cancer progression biomarker.[41, 42] This study illustrates 

the feasibility to target this novel biomarker in a triple negative breast cancer tumor model 

using DAPTA peptides conjugation. This work testifies that it is viable for the DAPTA 
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peptides conjugated PdCu@Au tripods to act as platforms for cancer diagnosis and 

treatment. 

2.3 Summary 

In this chapter, I demonstrated the controlled synthesis and surface modification of 

PdCu@Au tripods. With radioactive Cu-64 directly incorporated into the crystal lattice, 

the use of Pd64Cu@Au tripods for targeted cancer imaging and PET guided photothermal 

therapy were also demonstrated. Their novel anisotropic structure allows them a readily 

tunable LSPR peak in the NIR range with a large absorption to scattering ratio validated 

by both numerical simulation and photothermal generation experiment. By the conformal 

coating of the PdCu tripod cores, the Cu-64 could be fixed into the crystal lattice of the 

tripods with outstanding stability, and the cytotoxicity could be controlled to a low level. 

When DAPTA peptides were conjugated, the PdCu@Au tripods could be specifically 

delivered to the tumor sight with the active targeting capability to CCR5. With the 

capability to be quantitatively monitored by PET imaging, the DAPTA-conjugated Cu-64 

doped PdCu@Au tripods could be used to precisely diagnose cancer and to guide the 

therapy. In summary, I have demonstrated the capability of Pd64Cu@Au tripods as a novel 

multifunctional platform for image-guided cancer theranostics. 

2.4 Experimental 

2.4.1 Chemicals and Reagents 

Orthopyridyldisulfide-poly(ethylene glycol)-N-hydroxysuccinimide (OPSS-

PEG5000-SVA, MW ≈ 5,000) and poly(ethylene glycol)monomethyl ether thiol (mPEG5000-
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SH, MW ≈ 5,000) and were purchased from Laysan Bio (Arab, AL). DAPTA (D-

A1STTTNYT-NH2) were obtained as customized product from CPC Scientific 

(Sunnyvale, CA). Other chemicals and reagents, including Na2PdCl4 (99.998%), 

CuCl2·2H2O, KBr, PVP (MW ≈ 55,000), AA, dimethyl sulphoxide (DMSO), MTT, and 

DPBS were obtained from Sigma-Aldrich (St. Louis, MO). All chemicals were used as 

received. 

2.4.2 Synthesis of the PdCu Alloy Tripods 

The PdCu bimetallic tripods were first synthesized following the protocol 

previously reported by our group.[18] In a typical synthesis, 3 mL of aqueous solution 

containing 3 mg CuCl2·2H2O, 20 mg AA, 35 mg PVP, and 175 mg KBr were preheated in 

a 20 mL glass vial at 80 °C under magnetic stirring. After 10 min, 19 mg Na2PdCl4 in 1 

mL ultrapure water was introduced into the reaction solution. The reaction was then 

allowed to carry on for 2 h at 80 °C with the cap of the vial loosely capped. The reaction 

was stopped by rapidly cooling down the vial in ice bath, and the product was collected 

and washed by centrifuge. After three times of washing (8500 g, 30 min) with ultrapure 

water, the product was re-dispersed into 4 mL of ultrapure water as stock suspension for 

further use. Radioactive Pd64Cu bimetallic tripods were synthesized with a similar 

procedure at a smaller scale (1/4 scale), by introduce trace amount of 64CuCl2 during the 

preheating. Specifically, 1280 MBq of 64CuCl2 was added into 0.75 mL of the preheated 

solution prior to the addition of 0.25 mL Na2PdCl4 (19 mg/mL). The purified radioactive 

Pd64Cu tripods was re-dispersed in 1 mL of ultrapure water and used as a stock suspension 

for Au coating. The 64CuCl2 used in this synthesis was obtained from the CS-15 cyclotron 
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facility at the Washington University Medical School according to the published 

procedures.[43] 

2.4.3 Synthesis of the Radioactive PdCu@Au Core-shell Tripods 

The PdCu@Au tripods were obtained with or without radioactivity by the 

conformal coating of a Au shell on the surface of PdCu bimetallic tripod. With PVP as a 

colloidal stabilizer, HAuCl4 was chemically reduced by AA in the suspension of PdCu 

bimetallic tripods. Specifically, in a 250 mL flask, each 1 mL of the stock suspension of 

PdCu tripods was added into 50 mL aqueous solution containing 1.4 g AA and 240 mg 

PVP under vigorous stir. Subsequentially, 0.5 mM HAuCl4 was dropwisely added into the 

mixture at room temperature with the help of a syringe pump at 40 mL/h. The UV-vis-NIR 

spectra of the reaction suspension were frequently measured to monitor the position of its 

main LSPR peak. When the LSPR peak was blue-shifted to ca. 810 nm (120 mL HAuCl4), 

the reaction was stopped. The product was then collected, washed with ultrapure water by 

centrifuge, and re-dispersed into 1 mL DPBS to a particle concentration of 12.1 nM 

(estimated from the ICP-MS and TEM data). The measurement of particle concentration 

was conducted by measure the total amount of Pd and Cu content in the suspension, as the 

size and shape of the PdCu alloy core are more uniform than the PdCu@Au particles. 

2.4.4 Preparation of OPSS-PEG5000-DAPTA 

Before the surface modification, the OPSS-PEG5000-DAPTA molecules were first 

synthesized by conjugating the DAPTA onto PEG N-Hydroxysuccinimide (NHS) ester 

derivative of OPSS-PEG5000-SVA with their primary amine group. In a typical synthesis, 
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the OPSS-PEG5000-SVA was mixed with DAPTA peptides in DPBS at a molar ratio of 1:5 

to react overnight at 4 ºC. The resulted mixture was used without further purification. 

2.4.5 Conjugation of PEG and PEG-DAPTA with the PdCu@Au Tripods 

The PEGylation was conducted by incubating mPEG5000-SH or a mixture of 

mPEG5000-SH and OPSS-PEG5000-DAPTA (molar ration of 5 : 1) with the stock suspension 

containing PdCu@Au tripods at a molar ration of (tripod : PEG = 1 : 100,000). In a typical 

process, 1 mL of the stock suspension was mixed with 4 mL of aqueous solution containing 

7 mg of mPEG5000-SH or a mixture of 1.6 mg OPSS-PEG5000-DAPTA and 5.4 mg 

mPEG5000-SH. The conjugation was allowed to react at room temperature overnight on 

shaker. Excess OPSS-PEG5000-DAPTA and/or mPEG5000-SH were removed from the 

product with three times of washing with ultrapure water. The product was harvested with 

centrifugation and re-dispersed in saline for animal study. 

2.4.6 Numerical Simulation of the LSPR Spectra 

The extinction spectra of PdCu@Au tripod was also studied by numerical 

simulation with the 3D-FDTD method to calculate the scattering and absorption spectra.[29] 

In this particular study, I only foucsd on the calculation of longitudinal mode of the LSPR 

peaks. In the modeling, the arm length of the PdCu bimetallic core was set to 25 or 35 nm, 

with a diameter of 6 nm. The spectra were calculated with Au shell thickness of 2 to 4, 6, 

and 8 nm for both arm lengths. 
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2.4.7 Evaluation of the Photothermal Effect In Vitro 

To evaluate the photothermal generation capability of PdCu@Au tripods, 100 μL 

DPBS with (100−400 pM) or without PdCu@Au tripods were dispensed in separate wells 

on a 96-well plate. The suspensions were irradiated by a diode laser (λ = 808 nm, Power 

Technology, Alexander, AR) from the top at 0.25 to 1.0 W/cm2, while the temperature 

changes were monitored with a NIR camera (ICI7320, Infrared Camera, Beaumont, TX). 

Series of images were captured and the average temperature was readout from the 

thermograph using IR Flash software (Infrared Camera, version 2.10). 

2.4.8 Cell Culture 

The 4T1 breast cancer cell line was purchased from the American Type Culture 

Collection (ATCC, Manassas, VA, USA). The cells were cultured using Dulbecco’s 

Modified Eagle Medium (DMEM) with 10% fetal bovine serum and 1% 

penicillin/streptomycin, in a humidified atmosphere containing 5% CO2 at 37 °C. 

2.4.9 Cell Growth Inhibition Assay In Vitro 

A standard MTT assay was performed to quantify the cytotoxicity of PdCu@Au 

tripods. In a typical experiment, 4T1 breast cancer cells were cultured in 96-well plate at a 

density of 1×104 cells/well. After washing with DPBS, 100 µL fresh culture medium 

containing PEGylated or DAPTA-conjugated PdCu@Au tripods were introduced to a final 

concentration of 6.25 to 800 pM. Subsequentially, 25 μL of MTT stock solution (5 mg/mL 

in DPBS) was added to each well after 24 h of incubation. The cells were washed with 

DPBS after 2 h of incubation. And the formazan crystals were then dissolved in 100 μL 
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extraction solution (40% isopropanol in DMSO, v/v %) at 37 °C. The absorbance at 570 

nm were taken by plate reader (Infinite F200 Pro, Tecan, Switzerland) and normalized to 

the untreated control group. 

2.4.10 Cell Uptake of the PdCu@Au Tripods Measured by ICP-MS 

Cell uptake experiment were conducted on 24-well plates with 5×105 cells in each 

well. After washing with DPBS, 1 mL fresh culture medium containing PEGylated or 

DAPTA-conjugated PdCu@Au tripods were introduced to a final concentration of 200 pM. 

After 3 times of washing with DPBS, the cells were harvested at a series of time points. 

After the cells were dried, 300 µL aqua regia was added to completely digest the metal 

content in each sample. The metal contents of Au, Pd, and Cu were quantified using ICP-

MS. Together with TEM measurement, the metal contents were converted to the particle 

numbers. 

2.4.11 Mouse Tumor Model 

The 4T1 tumor bearing mice model were prepared by injecting 100 μL saline 

containing 5×106 cells subcutaneously into the right fat pad of female BALB/c mice 

weighing 15−20 g (7-week old). The tumors were allowed to grow to a size of 200−300 

mm3 before further animal study. All the protocols for animal studies were approved by 

the Washington University Animal Studies Committee. 

2.4.12 Pharmacokinetics and Biodistribution 

In the pharmacokinetics and biodistribution study, each mouse was injected with 

100 μL saline containing 47 μg PEGylayed or DAPTA-conjugated PdCu@Au tripods 
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(doped with 370 kBq Cu-64 /mouse) via the tail vein. At series time points (1, 4, and 24 h 

post injection), the mice were sacrificed by cervical dislocation after anesthesia. Organs of 

interest were than collected, weighed, and subjected to γ counting using a Beckman 8000 

gamma counter (Beckman, Fullerton, CA). The weight-normalized dosage was calculated 

as percentage of the %ID/g for each kinds of organ. 

2.4.13 PET Imaging of the PdCu@Au Tripods In Vivo 

Before the PET imaging, PEGylayed or DAPTA-conjugated PdCu@Au tripods 

(3.70 MBq, 470 μg/mouse) were intravenously injected to two groups of 4T1 tumor-

bearing mice (n = 3) in 100 µL saline. For the blocking group, the mice were intravenously 

injected with 100 µL of saline containing both radioactive (3.70 MBq) and non-radioactive 

DAPTA-conjugated PdCu@Au tripods at a molar ratio of 1 : 9, with total mass of 4700 

μg/mouse. At a series of time points, PET/CT images were acquired with microPET Focus 

220 (Siemens, Malvern, PA) or Inveon PET/CT system (Siemens, Malvern, PA). The PET 

instruments were cross-calibrated prior to the experiment. The tumor uptake of particles 

and SUV were determined from the images following our previous reported protocols.[3] 

2.4.14 Autoradiographic Imaging 

Tumors were dislocated from the mice after PET imaging (24 h post injection) and 

fixed in 4% paraformaldehyde. The tumors were frozen in optimal cutting temperature 

compound and sectioned into slices of 50 μm in thickness. The tumor slices were sealed to 

glass slides before subjecting to 2D autoradiography (InstantImager Electronic 

Autoradiography, Packard, Meriden, CT). 
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2.4.15 Targeted Photothermal Cancer Treatment In Vivo 

After locate the tumor site with PET/CT imaging, the mice used for the blocking 

study were subjected to photothermal therapy. At 24 h post injection, the mice were 

anesthetized. The tumors were irradiated with a diode laser (λ = 808 nm, Power 

Technology, Alexander, AR) setting at 1.2 W/cm2 for 10 min. The temperature profiles 

over the entire therapy were continuously monitored by NIR camera (ICI7320, Infrared 

Camera, Beaumont, TX). 4T1 tumor-bearing mice injected with 100 µL saline were 

employed as control. 

2.4.16 Evaluation of Photothermal Treatment with 18F-FDG PET/CT Imaging 

The therapeutic effect of photothermal therapy was evaluated 24 h post treatment 

using 18F-FDG (obtained from the Washington University cyclotron facility) PET/CT 

imaging to quantify the tumor metabolism. The mice were anesthetized and injected with 

100 μL saline 3.7 MBq 18F-FDG through the tail vein. At 1 h post injection, PET/CT 

images were acquired with microPET Focus 220 (Siemens, Malvern, PA) or Inveon 

PET/CT system (Siemens, Malvern, PA). The PET instruments were cross-calibrated prior 

to the experiment. The tumor uptake of 18F-FDG and SUV were determined from the 

images following our previous reported protocols.[3] 

2.4.17 Immunohistochemistry and Histologic Quantification 

For the histochemistry assays, paraformaldehyde-fixed (24 h) and paraffin-

embedded samples were sliced into a series sections of 5 μm thick. Before the antibody 

staining, a series of xylenes and graded alcohols treatments were conducted for the 
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deparaffinization and rehydration of specimens. Antigen retrieval pretreatment (10 × 10−3 

m Tris, 1 × 10−3 m ethylenediaminetetraacetic acid, 0.05% Tween, and at pH = 9.0 for 10 

min) was then conducted. To prevent nonspecific binding, all the slides were treated with 

0.3% H2O2 for 30 min, and blocking serum for 1 h (Vectastain, Vector Laboratories, 

Burlingame, CA). Antibody staining was then carried out by incubating a primary antibody 

(anti-CCR5, 1 : 100 in blocking serum, Santa Cruz Biotechnology, Dallas, TX) at 4 °C 

overnight. After the staining of secondary antibody (Vector Laboratories) a horse radish 

peroxidase-based immunostaining kit (Vector Laboratories) was employed to develop a 

brown color. Counterstaining of nuclei was accomplished with hematoxylin for a blue 

color. Images were acquired with a light microscope (Leica Microsystems). Routine H&E 

staining was also performed on the slides to analyze the morphology of the tissue. 

2.4.18 Real-time PCR Assay 

The RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA) following the 

manufacturer’s protocol from 4T1-Luc tumors was used for real-time PCR. For the reverse 

transcription reactions, 1 µg RNA, random hexamer priming, and Superscript II reverse 

transcriptase (Invitrogen) were employed. Taqman assays (Invitrogen) and an EcoTM 

Real-Time PCR System (Illumina, San Diego, CA) were used to quantify the expression 

of CCR5 and β-actin with cycling conditions set as: 50 °C for 2 min, 95 °C for 21 s, and 

60 °C for 20 s. The of β-actin was also quantified and used as a comparator for DD Ct 

calculations.  
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2.4.19 Western Blot 

For the western blot, 4T1 tumors and organ tissues were frozen and homogenized 

in NP40 buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40) supplemented with 

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). The mixtures were centrifuged 

at 4 °C. before the supernatant, the protein extract, was collected and measured using the 

Bio-rad protein assay (Bio-rad, Hercules, CA). From each sample, 80 µg of proteins was 

separated on a sodium dodecyl sulfate sodium salt-polyacrylamide gel electrophoresis and 

then electrophoretically transferred onto nitrocellulose membrane (Bio-rad, Hercules, CA). 

The membranes were treated with PBS-T (0.1% Tween-20 in PBS) containing 5% non-fat 

milk powder for 1 h for the inhibition of non-specific binding. Antibody staining was 

carried out with rabbit anti-CCR5 antibodies (dilution 1 : 2500, Santa Cruz, Dallas, TX) at 

4 °C overnight. Then, the membranes were developed with horseradish peroxidase-linked 

antirabbit IgG (dilution 1 : 5000; GE Healthcare Bio-Sciences, Pittsburgh, PA) for 45 min 

at room temperature after washing with PBS-T. The chemiluminescence were quantified 

with ECL substrate (GE Healthcare Bio-Sciences, Pittsburgh, PA) for 1 min, with images 

captured immediately. The expression level of β-actin was measured, and set as internal 

standard in parallel blots.  

2.4.20 Instrumentation 

The UV-vis-NIR spectra were acquired using a UV-vis-NIR spectrometer (Lambda 

750, PerkinElmer, Waltham, MA) with wavelengths set to 400-1200 nm. Radio-TLC was 

conducted with radioactive instant thin layer chromatography (Radio-ITLC, Bioscan, 

Washington, DC). The size and morphology of nanoparticles were directly visualized with 
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TEM (Hitachi HT7700, Hitachi, Japan) operating at 120 kV. For the radioactive Cu-64 

doped tripods, samples were left to decay for 90 days (170 half-lives) before deposited to 

nickel grid. The metal contents were measured by ICP-MS (NexION 300Q, PerkinElmer, 

Waltham, MA). 
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CHAPTER 3. NANOTRIPODS AS CONTRAST AGENTS FOR 

TWO-PHOTON LUMINESCENCE IMAGING 

3.1 Introduction 

In this chapter, I further demonstrate the application of PdCu@Au tripods in optical 

imaging with their outstanding two-photon-luminescence property. I have presented our 

recent study on the synthesis and LSPR properties of PdCu@Au tripods, as well as their 

application on photothermal cancer therapy. In this chapter, I focus our research on other 

optical properties of PdCu@Au tripods, like two-photon luminescence property as well as 

their use in optical imaging. 

Anisotropic Au nanostructures have received extensive research attention as they 

hold excellent optical properties, which are inherited from their morphologies. Although 

the syntheses of a few anisotropic Au nanostructures (Au nanorods, nanocages, nanoshells) 

have been established, the synthesis of Au nanostructure with branched arms still need to 

be explored.[1, 2] As summarized in chapter 2, I developed the PdCu@Au core-shell 

nanostructure with a novel tripod morphology. Their LSPR peak could be continuously 

tuned from 1000 to 800 nm by varying the thickness of Au coating. With the signature 

LSPR spectra, they also demonstrate large absorption to extinction ratio and a good 

photothermal generation capability. 

Two-photon luminescence imaging utilized the non-linear effect of contrast agent 

to absorb two coherent photons for the excitation of photoluminescence.[1] To meet the 

requirement of coherence and high intensity, a femtosecond laser with wavelength in NIR 
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range was typically employed. It provides the two-photon imaging technology with a 

higher special resolution along with a deeper penetration in biological tissue. However, as 

the high intensity at the focal point could easily induce photo bleaching to the contrast 

agents, the development of stable contrast agents is of great necessity. The development of 

nanoparticle-based contrast agents (such as Au nanorods, quantum dots) have been 

reported to have an orders-of-magnitude-higher two-photon action cross section than that 

of organic dyes and a superior stability against photo bleaching.[3] As an outstanding 

example, Au nanorods could be imaged by two-photon luminescence imaging at single-

particle level both in vitro and in vivo. Their excitation mechanism has also been 

throughout studied. In a recent work by Xu and co-workers, the two-photon excitation 

process of Au nanorods was found to be the combination of two one-photon process.[4] 

Different from the organic dyes that absorb two coherent photons at the same time, the 

plasmatic Au nanorods were observed to sequentially absorb two photons with an actual 

intermediate state existing in between. The actual energy level of the intermediate state is 

provided by the sp energy band, while the LSPR could enhance the absorption of incident 

photons.  

In this chapter, I demonstrated the two-photon luminescence imaging property of 

PdCu@Au tripods and their application in in vitro cancer cell imaging. With similar energy 

structure and LSPR future, I demonstrated the bright two-photon luminescence of 

PdCu@Au tripods. The PdCu@Au tripods were measured to have broad two-photon 

luminescence emission spectra with maximum emission at ca. 570 nm. By benchmarking 

to Au nanorods and organic dye of Rhodamine B, the PdCu@Au tripods were measured to 

have a two-photon action cross section of 1.83 ± 0.15 × 105 GM (Göppert-Mayer, 1 GM = 
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1 × 10-50 cm4s/photon), which is 3.6 ± 0.9 times higher than that from Au nanorods with 

same position on LSPR peak. This novel tripod structure was further demonstrated to have 

a good contrast enhancement capability in targeted cancer cell imaging. In combination 

with their LSPR properties and capability for Cu-64 incorporation and PET imaging, 

PdCu@Au tripods are expected to act as a new platform for cancer theranostic. 

3.2 Results and Discussions 

3.2.1 Preparation and Characterization of PdCu@Au Tripods 

The PdCu@Au core-shell nanostructure studied in this research has a novel tripods 

morphology that is recently developed by our group.[5] It possesses a PdCu bimetallic core 

of tripod shape that is conformally coated by a uniform layer of Au. I modified our original 

synthesis of PdCu bimetallic tripods by employing nitrogen protection in the synthesis. In 

the modified protocol, 2 mL aqueous solution containing 38 mg Na2PdCl4 was introduced 

into 6 mL of pre-heated solution containing 6 mg CuCl2·2H2O, 40 mg AA, 70 mg PVP, 

and 350 mg KBr. The reaction was then allowed to carry out under nitrogen protection at 

80 °C for 2 h, before the product was harvested by centrifuge. The PdCu bimetallic tripods 

were prepared with high purity as well as good uniformity on arm number and arm length, 

with less small particle counterparts. It is hypothesized that the nitrogen protection could 

suppress the oxidative etching caused by the oxygen in atmosphere, preventing the 

breaking of particle arms. Measured by inductively coupled plasma-atomic emission 

spectrometer (ICP-AES) the synthetic yield, according to the metal contents, was found to 

increase from 20.3 % to 70.4 %. The length of the branched arms could be controlled with 

the amount of KBr and reaction time. In the current study, I used PdCu bimetallic tripods 
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with arm length of 25.4±4.1 nm and arm width of 5.4±0.8 nm for the preparation of 

PdCu@Au tripods (Figure 3.1a). 

 

Figure 3.1. a) The TEM image of PdCu bimetallic tripods; b) the LSPR peaks of 

PdCu@Au tripods could be tuned by varying the amount of deposited Au. c) and d) 

shows the TEM image of PdCu@Au tripods corresponding to 12 mL and 6 mL in b), 

respectively. 

The coating of PdCu bimetallic tripods was in turn conducted following our 

previous reported protocol. When a solution of HAuCl4 (0.5 mM) was titrated into the 

aqueous suspension containing PdCu bimetallic tripods, AA, and PVP, the newly formed 

Au0 atoms could conformally deposited onto the PdCu tripods creating a uniform Au 

coating. Along with the deposition of Au atoms, the main extinction peak, corresponding 

to the longitudinal mode of LSPR, could be continuously tuned in the NIR range from 

above 1,000 nm to ca. 800 nm. The reaction was immediately stopped once the main LSPR 
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peak reached the pre-determined wavelength. In this present study, I choose two kinds of 

PdCu@Au tripods with main LSPR peak at ca. 808 nm (Tripod 808) or ca. 880 nm (Tripod 

880) for detailed assessment of their two-photon luminescence properties. The PdCu@Au 

tripods were characterized to have an average arm length of 45.3±5.6 nm and arm width of 

24.1±3.0 nm for Tripod 808, as well as arm length of 35.3±4.5 nm and arm width of 

19.3±1.8 nm for Tripod 880. (Figure 3.1 c,d) Commercially purchased citrate stabilized Au 

nanorods with a longitudinal peak centered at 809 nm and an average aspect ratio of 4.06 

were acquired as benchmark. As shown in Figure 1b PdCu@Au demonstrated a similar 

UV-vis-NIR spectra with a slightly broader longitudinal peak. The PdCu@Au tripods were 

further conjugated to mPEG5000-SH or FA-PEG5000-SH for the following experiment. 

3.2.2 Dependence of Two-Photon Luminescence on Excitation Intensity 

 

Figure 3.2. The two-photon luminescence intensity shows a Log-Linear dependency 

agent excitation power. 
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In the typical two-photon excitation process, contrast agents for two-photon 

imaging would absorb two photons from the coherent light to excite an electron from the 

ground state to the excited state. As such, the probability for an electron to be excited is 

proportional to the square of the intensity of incident laser. This relationship was first tested 

on PdCu@Au tripods using a commercial two-photon confocal microscope (LSM 710 

NLO-FLIM, Carl Zeiss, Germany) equipped with a femtosecond Ti:Sapphire laser and a 

34-channel photomultiplier tube-based detector module. By choosing the appropriate filter, 

suspension containing 1 nM PdCu@Au tripods were imaged at 800 nm excitation, with 

luminescence signal collected from 499 to 735 nm. The gray value of every image was 

integrated and compared. As shown in Figure 3.2, the photo luminescence signal displayed 

a linear relationship to the excitation power in the range of 2–6% when plotted in Log scale. 

The slope of the fitting curve was measured as 1.94 ± 0.21, indicating a two-photon 

excitation process. When the power was further increased to above 8%, the luminescence 

intensity began to slowly increase, indicating a loss of integrity of the PdCu@Au tripods 

as the result of photothermal heating. 

3.2.3 The Emission Spectra and Two-Photon Action Cross Sections 

I further measured the emission spectra of the two-photon luminescence from 

PdCu@Au tripods. In this experiment, an aqueous suspension containing 1 nM PdCu@Au 

tripods was sealed into sample holder, and subjected to two-photon microscopy with 800 

nm excitation. By collecting photo luminescence images independently with different 

channels, luminescence intensity data was calculated from the sets of images with a 

spectral resolution of 4 nm. As shown in Figure 3.3a, PdCu@Au tripods shows a broad 

emission peak with a maximum emission at ca. 570 nm. I then prepared Au nanorods 
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suspension with maximum attenuation at 809 nm as benchmark. With the same setting, 

two-photon luminescence emission spectra of Au nanorods, which have the same 

attenuation value (5.85 a.u., 2.4 nM) at ca. 808 nm were measured. The emission spectrum 

of Au nanorods shows a maximum emission at ca. 500 nm, with a long tail extending to 

above 700 nm.(Figure 3.3a) This result corresponds well with previous studies that testified 

the reliability of the experimental setup. By comparing the emission spectra of PdCu@Au 

tripods and Au nanorods, I find that the maximum luminescence intensity from PdCu@Au 

tripods (1 nM) is 1.93 ± 0.35 times that from the Au nanorods (2.4 nM) in aqueous 

environment under 800 nm excitation. This result indicated a 3.6 ± 0.9 times higher two-

photon action cross section of PdCu@Au tripods then that from Au nanorods of same 

LSPR peak position. To quantify the two-photon action cross section of the 

abovementioned nanoparticles, I also benchmarked the emission spectra to an organic dye, 

Rhodamine B (Figure 3.3b). Rhodamine B is a widely used organic dye with a two-photon 

action cross section measured as 153 GM (1 GM = 1 × 10-50 cm4s/photon) in ethanol under 

800 nm excitation. The two-photon action cross section of PdCu@Au tripods and Au 

nanorods were than measured as 1.83 ± 0.15 × 105 GM and 3.97 ± 0.39 × 104 GM, 

respectively. This results also correspond well with the works published by Xu and co-

workers.[3] Taken together, PdCu@Au tripods possess a large two-photon action cross 

section 3.6 times higher than Au nanorods (Figure 3.4), within the range of that of quantum 

dots (2000-47000 GM).[6, 7] 
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Figure 3.3. a) The two-photon luminescence emission spectra of PdCu@Au tripods 

and Au nanorods. B) The cooperation of two-photon luminescence excited from 1 nm 

PdCu@Au tripods, 2.4 nM Au nanorods, and 10 μM Rhodamine B. 

 

 

Figure 3.4. The comparison of two-photon action cross sections from different kinds 

of Au nanoparticles. 

3.2.4 Measurement of the Two-Photon Quantum Yield 

I further measured the two-photon quantum yield for PdCu@Au tripods and Au 

nanorods with the indirect method.[8, 9] The photoluminescence emitted from PdCu@Au 
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tripods and Au nanorods were compared to that from Rhodamine B of similar absorption. 

The extinction of Tripod 808, Au nanorods, and Rhodamine B were directly read out from 

their UV-vis extinction spectra. Based on numerical simulation in chapter 2 and previous 

report, about 91% of the total extinction of Tripod 808 was caused by the absorption at 800 

nm, and is comparable to that ratio of Au nanorod.[5, 10] According to previous report, the 

two-photon quantum yield of Rhodamine B was reported to be 0.7.[11] The two-photon 

quantum yield of Tripod 808 and Au nanorods was determined as 2.1 ± 0.2 × 10-6 and 1.1 

± 0.1 × 10-6, respectively. This measurement for Au nanorods is slightly lower than that 

reported by Orrit and co-workers using single Au nanorod (3.8–8.0 × 10-6). It is worth 

pointing out that significant higher two-photon quantum yield (ca. 10-4) were reported for 

Au nanorods. That could be the result of particle-particle interaction, caused by the 

aggregation of samples when deposited onto substrate.[12] In contrast, the dispersed 

particles and isolated deposited particles will not be affected by this enhancement caused 

by local electromagnetic field enhancement, thus the corresponding measurements of their 

two-photon quantum yield were lower. 

3.2.5 Contrast Enhanced Two-Photon Luminescence Imaging In Vitro 

The in vitro contrast enhancement capability was also demonstrated with 

PdCu@Au tripods on MDA-MB-435 breast cancer cells. After incubation with mPEG5000-

SH or FA-PEG5000-SH coated PdCu@Au tripods for certain period of times, cells were 

washed out and fixed with 4% PFA solution. A green fluorescent dye, DiO (3,3'-

dioctadecyloxacarbocyanine, perchlorate), was also applied to counterstain the cell 

membrane. As shown in Figure 3.5, the two-photon luminescence only associated with the 

cells stained with PdCu@Au tripods with low background signal. Comparing to the non-
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targeted group, the FA conjugated group exhibit significant higher luminescence signals, 

indicating an elevated cell uptake of nanoparticles via folic acid receptor mediated 

endocytosis. A time dependent behavior of luminescence intensity was also observed for 

both groups, as the luminescence signal increases along with the time of incubation. 

 

Figure 3.5. In vitro contrast enhancement with PdCu@Au tripods. 

3.3 Summary 

In this chapter, I have demonstrated the outstanding two-photon luminescence 

property of PdCu@Au tripods and applied it to cancer cell imaging. Based on the 

quantitative measurement, the PdCu@Au tripods exhibit a 3 order of magnitude higher 

two-photon action cross section than that from organic dyes (such as Rhodamine B). 

Comparing to the widely-used Au nanorods, which have been extensively studied for two-

photon luminescence microscopy, the PdCu@Au tripods still shows a ca. 4.6 times higher 

two-photon action cross section and comparable two-photon quantum yield (2.1 ± 0.2 × 

10-6) indicating a superior two-photon luminescence property. By in vitro cancer cell 
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targeting experiment, the PdCu@Au tripods were also demonstrated to be delivered to 

cancer cells for contrast enhancement of two-photon luminescence imaging. In 

combination with the excellent LSPR property (tunable peak position in NIR region, 

photothermal generation capability) and PET imaging capability demonstrated in chapter 

2, I validated that the PdCu@Au tripods could act as a novel multifunctional platform that 

holds great potential for cancer theranostics. 

3.4 Experimental 

3.4.1 Chemicals and Reagents. 

Citrate stabilized Au nanorods with maximum extinction at 809 nm (Lot. # 

DMW0339) were obtained from NanoComposix (San Diego, CA). Folic poly(ethylene 

glycol)monomethyl ether thiol (FA-PEG5000-SH, MW ≈ 5,000) was purchased from 

Nanocs Inc. (New York, NY), poly(ethylene glycol)monomethyl ether thiol (mPEG5000-

SH, MW ≈ 5,000) was obtained from ToYong Bio (Shanghai, China). Cell Counting Kit-

8 (CCK-8) was obtained from Solarbio (Beijing, China), and DPBS was obtained from 

Hyclone (Logan, UT). 3,3’-dioctadecyloxacarbocyanine perchlorate cell staining kit (DiO) 

was obtained from Beyotime (Shanghai, China). Other chemicals and reagents, including 

Na2PdCl4 (99.998%), KBr, PVP(MW ≈ 55,000), CuCl2·2H2O, AA, DMSO, were obtained 

from Sigma-Aldrich (St. Louis, MO). All chemicals were used as received. 

3.4.2 Synthesis of the PdCu Alloy Tripods. 

The PdCu tripods were prepared with a modified method of the synthesis originally 

reported by our group.[13] In the modified synthesis, 6 mL of aqueous solution containing 
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6 mg CuCl2·2H2O, 40 mg AA, 70 mg PVP, and 350 mg KBr were preheated in a 20 mL 

glass vial at 80 °C under magnetic stirring. After 10 min, 38 mg Na2PdCl4 was dissolved 

into 2 mL ultrapure water and introduced into the reaction solution. The reaction was then 

allowed to carry on under nitrogen protection for 2 h at 80 °C. The reaction was stopped 

by rapidly cooling down the vial in ice bath, and the product was collected and washed by 

centrifuge. After three times of washing (8500 g, 30 min) with ultrapure water, the product 

was re-dispersed into 8 mL of ultrapure water as stock suspension for further use. 

3.4.3 Synthesis of the mPEG-PdCu@Au and FA-PEG-PdCu@Au Tripods. 

The PdCu@Au tripods were synthesized by directly coating PdCu tripods with Au 

via chemical deposition. In the modified synthesis, aqueous solution of HAuCl4 was 

dropwisely (2 mL/h) added into the glass vial containing 24 mg PVP, 70 mg AA, 4.0 mL 

H2O and 50 μL stock solution of PdCu tripods with the help of syringe pump at room 

temperature. The extinction spectra of the reaction solution were monitored using UV-vis-

NIR spectrometer for the position of main LSPR peaks. The titration was stopped when 

the main LSPR peaks reached ca. 880 and ca. 810 nm, which corresponded to a titration 

volume of 6 and 12 mL, respectively. The products were harvest by centrifuge at 3200 g 

for 30 min. and washed 3 times with H2O. The concentration of PdCu@Au tripods was 

quantified by ICP-AES (Profile Spec, Leeman, USA). The surface of as prepared 

PdCu@Au tripods was then functionalized by direct incubation with mPEG5000-SH or the 

mixture of FA-PEG5000-SH and mPEG5000-SH (molar ratio = 1 : 5). The PdCu@Au tripods 

were allowed to react in 1 mL solution containing 14 mg of PEG derivatives at room 

temperature for 24 h, at a molar ratio of ca. 1 : 200,000. Excess PEG derivatives were 

removed with centrifuge. 
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3.4.4 Characterization of PdCu@Au Tripods. 

The measurement of extinction spectra was carried out with a UV-vis spectrometer 

(UV-2550, Shimadzu, Kyoto, Japan) with wavelengths in the range of 400-900 nm. The 

size and morphology of PdCu@Au tripods were directly imaged under TEM (Tecnai F30, 

FEI) operated at 300 kV. Their composition was measured by ICP-AES analysis with 

Profile Spec (Leeman, USA). 

3.4.5 Cell Culture. 

The MDA-MB-435 breast cancer cell line was obtained from the American Type 

Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in DMEM 

medium, supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin, at 37 

°C in a humidified atmosphere of 5% CO2. 

3.4.6 Cell Proliferation and Cytotoxicity Assay In Vitro. 

The MDA-MB-435 cells were seeded in 96-wall plates at a density of 1×104 

cells/wall, and were allowed to grow for 24 h. Prior to the assay, the cells were washed 

with 100 µL fresh DPBS. Then, 100 µL culture medium containing mPEG-PdCu@Au 

tripods or FA-PEG- PdCu@Au tripods with concentration of 6.25 to 800 pM were added 

to different walls. After 24 h, the culture medium was removed and changed to 100 µL 

fresh culture medium containing 10 μL of the CCK-8 solution (final concentration of 1 

mg/mL). after another hour of incubation, the attenuation at 450 nm was measured for each 

wall with a microplate reader (Spectramax M2E, Molecular Devices, Sunnyvale, CA). The 
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results were normalized to the attenuation from the control group to which no nanoparticles 

were introduced. 

3.4.7 The Two-Photon Luminescence of PdCu@Au Tripods. 

The two-photon luminescence properties of PdCu@Au tripods were observed and 

quantified using a commercial two-photon confocal microscope (LSM 710 NLO-FLIM, 

Carl Zeiss, Germany) equipped with a femtosecond Ti:Sapphire laser (Coherent, Santa 

Clara, CA). A 34-channel photomultiplier tube-based detector module was also integrated 

with the microscope for the measurement of emission spectra of the two-photon 

luminescence. In the typical process, 20 μl aqueous samples containing 1 nM mPEG-

PdCu@Au tripods, 2.4 nM Au nanorods, 10 μM Rhodamine 6G, or 10 μM Rhodamine B 

were sealed onto slides, respectively. An aqueous solution of mPEG5000-SH (1 mg/mL) 

was used as control to get the background signal. The height of the chamber was controlled 

to 150 μm by sandwiching a cover slip with two others. The laser beam was focused on the 

suspension by a 10× water-immersion objective. The data was collected as a series of gray-

scale images, from which the gray value was summed up as the corresponding 

luminescence intensity. The two-photon luminescence emission spectra were collected 

when the 34-channel photomultiplier tube-based detector module was employed. By 

varying the wavelength and power of the excitation the two-photon luminescence under 

different excitation conditions was assessed. 

3.4.8 Contrast Enhanced Two-Photon Luminescence Imaging In Vitro 

To prepare the samples, the MDA-MB-435 cells were first cultured onto glass cover 

slips in 6-wall plates to a coverage of 60 %. Then the culture medium was changed to fresh 
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culture medium containing 20 pM of tripods. After certain time of incubation, the culture 

medium was removed. The slides were extensively washed with DPBS for 3 times to 

remove the loosely bond particles on the surface of cells and cover slips. The cells were 

subsequently fixed by incubation with 4% paraformaldehyde for 20 min. The green 

florescent lipophilic dye of DiO was then employed to stain the cells by incubation with 2 

mL fresh DPBS containing 10 μL DiO stock solution (1 mM in DMSO) for 20 min at 37 

°C. The cells were washed for 3 times after staining by incubation with fresh DPBS at 37 

°C for 30 min. All the samples were sealed onto glass slides before subjecting to two-

photon confocal imaging. 
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CHAPTER 4. AU-199 DOPED AU NANOPARTICLES AS 

CONTRAST AGENTS FOR TARGETED SPECT IMAGING 

The choice of medical isotope in medical imaging will always affect the choice of 

imaging technology and radiolabeling chemistry. In previous chapters, I have demonstrated 

the incorporation of Cu-64 into the crystal lattice of PdCu@Au tripods at high efficiency. 

However, the labeling of Cu-64 in Au nanoparticles can hardly follow the same approach, 

as the size and morphology of Au nanoparticles would be altered. A possible solution to 

this issue is to develop new medical isotopes that has similar chemical properties. At the 

meantime, the different emission energy spectra of certain radionuclides will greatly affect 

the imaging quality and sensitivity. Thus, the choice of suitable medical isotopes and their 

radiolabeling chemistry play important roles in nuclear medicine. In this chapter, I 

demonstrated the use of Au-199 as novel medical isotopes for targeted SPECT imaging of 

cancer. The Au-199 has the same chemical properties that could be feasibly incorporate 

into Au nanoparticles without affecting their morphology. 

4.1 Introduction 

I have demonstrated the use of Au nanoparticle-based nanomedicine for various 

application such as contrast enhancement of nuclear imaging, optical imaging, and 

excellent tumor targeting capability, as well as photothermal generation capability. Their 

application in biomedical imaging has attract great interest as they can serve as platforms 

to further integrate other functions for cancer theranostics.[1, 2-6] In the context of nuclear 

medicine, Au nanoparticles have been widely used for contrast agents for PET and SPECT 
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imaging.[7, 8] Cancer lesion could be detected at a high sensitivity, with only trace amount 

of contrast agents administrated in vivo. As detailed in previous chapter, the radio labeling 

of Au nanoparticles typically relies on the chelating with a macrocyclic chelating ligand. 

The unstable labeling through this strategy could greatly affect the imaging-guided 

treatment of cancer, on the accuracy staging of disease, treatment plan designing, treatment 

response evaluation, as well as ultimately improvement of patient care. At the mean time. 

chelator-free approaches such as nuclear bombardment and radiochemical synthesis, have 

been designed and demonstrated with various kinds of radionuclides.[9-20] 

Among the radioisotopes of Au, Au-198 and Au-199 have been found to be 

medically useful with their attractive nuclear properties.[21] Our group have recently 

reported the use of Au-198 for both SPECT and Cerenkov luminescence imaging.[12, 22, 23] 

However, its high-energy γ emission and abundant moderate-energy β− emission suit better 

into the therapeutic applications rather than nuclear imaging.[17, 24] In comparison, Au-199 

(t1/2 = 3.2 d) emits less energetic γ and β− emission, and can be prepared with high specific 

activity without carrier by the bombardment of enriched 198Pt with neutrons. A recent study 

reported the use of low purity Au-199 and Au-198 mixture for the radiolabeling of 

graphene oxide through a chelating ligand for SPECT imaging.[25] However, both the 

radiolabeling stability of radionuclides and the image quality of SPECT need further 

improvement. 

Comparing to other imaging modalities, nuclear imaging probes hold high 

sensitivity and minimal in vivo pharmacodynamics effect, which are favorable to the 

evaluation of progression and metastasis of breast cancer.[26, 27] However, there is still an 

urgent clinical need for a multivalent nanoparticle-based agent, to detect prognostic 
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biomarkers of breast cancer with improved specificity and sensitivity.[26, 28, 29] In recent 

studies, CCR5 has been reported as promising prognostic biomarker, which can be used to 

track the progression of breast cancer in both preclinical and clinical studies. Triple 

negative breast cancer, which could hardly be targeted via the widely-used biomarkers, 

could also been targeted with CCR5. Importantly, the expression of CCR5 is also shown 

to be closely associated with the metastasis of breast cancer, and possesses great potential 

as a therapeutic target for both primary and metastasis lesion.[30, 31, 32] 

In this chapter, I demonstrate the synthesis of Au-199 doped Au nanoparticles and 

the assessment of their biodistribution profiles as well as contrast enhancement for SPECT 

imaging in 4T1 tumor bearing mice model. The incorporation of Au-199 into the crystal 

lattice of Au nanoparticles provide the resulted Au nanoparticle with outstanding 

radiolabeling stability. The unanimous chemical property of Au-199 and straightforward 

synthesis ensured a high uniformity in the size of Au nanoparticles and tight control over 

the specific activity. The in vivo targeting capability and favorable pharmacokinetics was 

also demonstrated with DAPTA conjugated Au nanoparticle for the detection of CCR5 in 

4T1 tumor bearing mice model. 

4.2 Results and Discussions 

The Au nanoparticles used in this study were synthesized with high uniformity in 

size and shape, through a seed-mediated approach as recently reported by our group for the 

preparation of single-crystal Au nanospheres.[33] For the radiolabeling of Au-199, I 

introduced controlled amount of radioactive H199AuCl4 during the growth step of the 

synthesis, aiming to minimize the radiation exposure.[34] In a typical synthesis, a stock 
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suspension containing Au clusters was first prepared by rapidly mixing of fresh prepared 

NaBH4 solution with HAuCl4 solution in the presence of CTAB under vigorous stirring. 

Before the next step of growth, the resulted mixture was allowed to age for 3 h at room 

temperature to ensure a complete decomposition of NaBH4. To prepare Au nanoparticle 

with 5 nm in diameter, the Au clusters were subjected to another round of growth in a 

solution containing CTAC, AA, and HAuCl4. Upon the addition of Au clusters, the 

suspension turned rapidly into bright red indication the emerging of LSPR peak around 

520-530 nm (Figure 4.1). This feature in LSPR is in good agreement with previous 

studies.[19] To prepare Au nanoparticles with 18 nm in diameter, 10 nm Au nanoparticles 

were first prepared by increasing the molar ratio of HAuCl4 to the Au clusters. After 

substituting the stabilizer from CTAB to CTAC, 10 nm Au nanoparticles could be further 

grown into 18 nm Au nanoparticles with another round of growth following a similar 

procedure. 

 

Figure 4.1. The UV-vis spectra of Au nanoparticles (shown as Au NPs) of 5 and 18 nm 

in diameter, with PEG (shown as AuNP-PEG) or DAPTA-PEG (shown as AuNP-

DAPTA) conjugated on their surface. 

For the synthesis of Au-199 doped Au nanoparticles, the same protocol where used 

except for the partial substitution of controlled amount of H199AuCl4 (
199Au : 197Au = 1 : 
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1.65 × 105) during the secondary growth of Au nanoparticles. As shown in Figure 4.2 a,b 

by the TEM images, the Au-199 doped Au nanoparticles have a well-defined spherical 

shape together with a narrow size distribution. The Au nanoparticles used in this study 

were measured to have an average size of 4.7 ± 1.3 nm and 17.6 ± 0.9 nm, respectively. By 

controlling the amount of H199AuCl4, the specific activity of Au-199 doped nanoparticles 

could be readily labeled with controlled dose of radioactivity (Figure 4.2c), making it easy 

to handle in everyday use. At the meantime, the radiolabeling yield could reach to as high 

as 96.2 ± 0.2% (n = 8) when the H199AuCl4 was introduced to the synthesis directly. The 

fast protein liquid chromatography (FPLC) measurement, shown in Figure 4.2d, reveal a 

high chemical and radiochemical purity of about 100%, with a single overlapping peak on 

the UV and radioactive trace simultaneously. Since Au-199 possesses identical chemical 

properties to their stable Au-197 counterparts, this radiolabeling approach also provides 

the nanoparticles with the necessary chemical stability requirement for in vivo biomedical 

applications, as we previously demonstrated with Au-198 doped nanoparticles.[22]  

Before the pharmacokinetic evaluation on 4T1 tumor bearing mice model, Au-199 

doped Au nanoparticles were first PEGylated with poly(ethylene glycol) methyl ether thiol 

(HS-PEG5000-OMe, MW ≈ 5000) according to our previously reported procedures.[18, 19] 

As shown by the pharmacokinetic data Figure 4.3, the Au-199 doped Au nanoparticles of 

different sizes both showed comparable biodistribution profiles at all the time points. 

Specifically, their blood retentions measured at 1 h post injection were 45.2 ± 5.8%ID/g 

and 48.0 ± 5.5%ID/g, respectively (sum of the signals from blood, lung, and heart). At 4 h 

post injection, the blood pool clearance of 5 nm Au nanoparticles was ca. 35% lower than 

that of the 18 nm counterpart, partially owning to their smaller size. Along with the slightly 



www.manaraa.com

 83 

lower liver accumulation, their spleen uptake was observed to be 78% higher. This result 

was in agreement with previous publications.[7, 19] After 4 h, the blood retention of Au 

nanoparticles began to drop, and the tumor uptake increased consequently. The tumor to 

muscle ratio for the 5 nm Au nanoparticles was observed to be 10.1 ± 2.3 (n = 4), similar 

to that of the 18 nm counterparts. This observation was also is consistent with previous 

publication.[19] 

 

Figure 4.2. (a, b) The TEM micrographs showing the morphology of Au-199 doped 

Au nanoparticles of (a) 5 nm and (b) 18 nm in diameter, respectively, after 90 days of 

decay. (c) Plot of radioactivity in the H199AuCl4 precursor the resultant 5-nm 199Au-

doped Au nanoparticles. (d) The Radio-FPLC assay showing the high chemical and 

radiochemical purity of the 5-nm PEGylated 199Au-doped Au nanoparticles. Blue: UV 

trace; red: radioactivity traces. 
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Figure 4.3. Biodistribution profiles of the Au-199 doped Au nanoparticles (left panels) 

and their tumor accumulation (right panels) in 4T1 tumor-bearing mice model at 1, 

4, and 24 h post injection (n = 4 per group). The Au nanoparticles were conjugated 

with PEG chains, with 5 nm and 18 nm cores. 



www.manaraa.com

 85 

 

Figure 4.4. A schematic illustration of the synthesis and conjugation of DAPTA-

conjugated Au nanoparticles (shown as 199Au-AuNP-DAPTA). 

Following the biodistribution study, I further assess the in vivo tumor targeting 

capability of DAPTA peptide-conjugated Au nanoparticle, following the approach 

previously reported by our group.[36] For the conjugation of DAPTA peptides, I first 

conjugated DAPTA to OPSS-PEG5000-SVA (see Figure 4.4). The resultant PEG derivatives 

were mixed with HS-PEG5000-OMe at a molar ratio of 1:3 and incubated with the Au-199 

doped 5 nm Au nanoparticles. As shown in Figure 4.5, the biodistribution profile was 

substantially improved for DAPTA-conjugated Au nanoparticles, with elevated blood 

retention (4.77 ± 0.65%ID/g) that was two times higher than that from the PEGylated non-

targeted counterparts, at 24 h post injection. The liver uptake was also observed to be ca. 

60 % less than that of the non-targeted nanoparticles while the accumulation in spleen 

remained similar. It is suggested that the improvement of their blood retention and, further, 

the biodistribution profile could be the result of reducing liver accumulation of DAPTA-

conjugated Au nanoparticles. This result was also testified by our recent research using 

polymeric nanoparticles, where the DAPTA conjugation altered the surface charge of 

nanoparticles and reduced the liver uptake.[36] It is worth noting that the tumor uptake of 
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DAPTA-conjugated Au nanoparticles was found to be more than doubled (7.13 ± 

0.08%ID/g, n = 4), while the tumor to muscle ratio dramatically increased to 18.7 ± 1.69 

(n = 4) clearly demonstrating the effectiveness of the targeting technique using CCR5 as 

cancer biomarker and DAPTA peptide as ligand. Taking together, the tumor uptake of 

PEGylated Au nanoparticles of 3.45 ± 1.44 %ID/g at 24 h post injection, the active 

targeting by DAPTA to CCR5 should be account for the most contribution than the passive 

targeting via the EPR effect. In that case, it is still of greater potential to further improve 

the targeting efficiency by optimizing the surface density of conjugated DAPTA peptide. 

 

Figure 4.5. The biodistribution and tumor targeting selectivity of DAPTA peptide-

conjugated Au nanoparticles in 4T1 tumor bearing mice model. Left: Biodistribution 

profile of the 5 nm DAPTA-conjugated Au nanoparticles (shown as 199Au-AuNP-

DAPTA) at 24 h post injection (n = 4). Right: Quantification of tumor uptake and 

tumor to muscle ratio of 199Au-AuNP-DAPTA, showing the improved efficiency and 

selectivity for tumor targeting. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/adhm.201500992#figure-viewer-adhm201500992-fig-0003
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Figure 4.6. SPECT/CT image of a 4T1 tumor-bearing mouse injected with 5 nm 

DAPTA-conjugated Au nanoparticles showing the tumor targeting at 24 h post 

injection (T: tumor). 

With 5 nm DAPTA-conjugated Au-199 doped Au nanoparticles, I further assessed 

the SPECT contrast enhancement capability of Au-199, with a targeted SPECT/CT 

imaging experiment on 4T1 triple negative breast cancer model. As shown in Figure 4.6, 

the DAPTA-conjugated Au nanoparticles demonstrated a high accumulation in tumor with 

a heterogeneous pattern of penetration. Significant accumulation in liver and spleen was 
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also observed in agreement with the biodistribution profile obtained beforehand. In 

addition, compared to the unsatisfied SPECT image acquired with a mixture of Au-198 

and Au-199 on graphene oxide, the imaging quality was greatly improved with Au-199 

doped Au nanoparticles as a result of elimination of high energy emission from Au-198.[25] 

Our work clear reveals the suitability of Au-199 as medical isotope for SPECT imaging, 

as well as the great potential using DAPTA-conjugated Au nanoparticles for accurate 

detection of CCR5 in triple negative breast cancer. 

 

Figure 4.7. Autoradiography images showing the heterogeneous intratumoral 

distributions of three different types of Au-199 doped Au nanoparticles in the 4T1 

tumors at 24 h post injection. 

 

Figure 4.8. (a) H&E and (b) immunohistochemistry of the 4T1 mouse tumor and its 

lung metastasis, showing the high-level expression of CCR5 in both the primary 

tumor site and lung metastasis (Green: metastasis; Red: CCR5; Brown staining). 
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The intratumoral distributions of the different kinds of Au nanoparticles were also 

evaluated via autoradiography. Tumor tissues were extracted and sectioned into slices of 

40 μm thick. As shown by the autoradiography in Figure 4.7, all three kinds of Au 

nanoparticles demonstrated heterogeneous distributions, while the 5 nm 199Au-doped 

DAPTA-conjugated Au nanoparticles accumulated more homogeneously inside the tumor 

that is in agreement with the SPECT imaging results. 

A significant connection between the up-regulation of CCR5/CCL5 and the 

progression of tumor has recently been reported by many groups, indicating a direct 

promotion effect in the progression of breast cancer.[31, 32] As shown by the 

immunohistochemistry staining data (Figure 4.8), an elevated expression of CCR5 was 

observed on both the cell membrane and the nuclei after 2 weeks of implantation. At 4 

weeks post implant, noticeable metastasis lesion was found in lung. The up regulation of 

CCR5 was only observed at the metastasis lesion instead of the healthy lung tissue, 

indicating a direct association of CCR5 with cancer metastasis. This observation is in 

consistent with previous findings,[30, 36] in which CCR5-positive tumor cells were found to 

display increased invasiveness for metastasis. These biological studies confirmed that the 

specific role of CCR5 as progressive biomarker for primary cancer and metastasis lesion, 

indicating a great potential for CCR5 targeted diagnosis and therapy.  

4.3 Summary 

In this chapter, I demonstrated the synthesis and surface modification of DAPTA-

conjugated Au-199 doped Au nanoparticles as well as their use for CCR-5 targeted tumor 

imaging with SPECT. The feasibility of using Au-199 as medical isotope for SPECT 
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imaging was also validated. The novel radiolabeling strategy of incorporating Au-199 into 

the crystal lattice of nanoparticles provides an extraordinary labeling stability with easily 

controlled radioactive dosage. This extraordinary labeling stability and moderate energy 

level of Au-199 enabled a high-quality SPECT imaging with low background for accurate 

quantification of the cancer biomarkers in vivo. The novel approach using DAPTA peptides 

for CCR5 targeting dramatically improved the biodistribution profile of Au-199 conjugated 

nanoparticles, enhanced their sensitivity and specificity in tumor targeted SPECT imaging. 

Our current work of using Au-199 doped nanoparticles for targeted SPECT imaging only 

served as a proof-of-concept demonstration for the merit of Au-199 as novel medical 

isotope in nuclear imaging. The long half-life of Au-199 also provides the imaging probes 

with the capability for a prolonged study duration. Despite the current focus of using 

DAPTA-conjugated Au-199 doped Au nanoparticles for the diagnosis of primary cancer 

with SPECT, future study could help to fully reveal the potential of CCR5 as the biomarker 

for sensitive detection of metastasis lesion. 

4.4 Experimental 

4.4.1 Chemicals 

HAuCl4·3H2O (≥99.9 %), AA, NaBH4, CTAB, and CTAC, ≥98.0 % were obtained 

from Sigma-Aldrich (St. Louis, MO). Ultrapure water was prepared using an E-Pure 

filtration system (Barnstead International, Dubuque, IA) with a resistivity of 18.2 MΩ/cm. 

The mPEG5000-SH (MW ≈ 5000) was obtained from Nanocs (Boston, MA) and OPSS-

PEG5000-SVA (MW ≈ 5000) was obtained from Laysan Bio (Arab, AL). DAPTA was 

acquired as customized product from CPC scientific (Sunnyvale, CA). The H199AuCl4 
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aqueous solution was obtained from the Missouri University Research Reactor (Columbia, 

MO). All chemicals were used as received. 

4.4.2 Preparation of Au Nanoparticles 

The Au nanoparticles were prepared with a seed-mediated growth approach. In a 

typical synthesis, a suspension containing Au cluster was first prepared by rapidly adding 

300 μL ice-cold NaBH4 into the aqueous solution containing 2.5 mL of aqueous CTAB 

(200 mM) and 2.5 mL of aqueous HAuCl4 (0.5 mM). After 3 h of aging to completely 

decompose NaBH4. The Au clusters were subjected to further growth. 

For the growth of Au nanoparticles of 5 and 10 nm, 1000 μL and 100 μL of the 

aqueous suspension containing Au clusters was added to a solution containing 2 mL of 

CTAC (200 mM), 2 mL HAuCl4 (0.5 mM), and 1.5 mL AA (100 mM), respectively. The 

mixture was gently shaken for 2 min and allowed to react for 1 h. The as prepared Au 

nanoparticles were collected by ultrafiltration (Molecular weight cut-off (MWCO) ≈ 100 

K, Amicon, 10,000 g, 5 min), and washed with 4 mL of ultrapure water before further use. 

For the preparation of 18 nm Au nanoparticles, 10 nm Au nanoparticles were used 

as seeds. In a typical synthesis, 160 μL aqueous suspension containing 10 nm Au 

nanoparticles was mixed with 1 mL CTAC (200 mM), 1 mL H2O, and 130 μL of AA (10 

mM). After gentle mixing, 2 mL HAuCl4 (0.5 mM) was dropwisely (at a rate of 2 mL/h) 

added into the mixture with the help of syringe pump under magnetic stirring. The as 

prepared Au nanoparticles were collected by centrifuge (13,200 rpm, 10 min), and washed 

three times with of ultrapure water before further use. 
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4.4.3 Preparation of Au Nanoparticles Doped with Au-199 Atoms 

Using a similar protocol, The Au-199 doped Au nanoparticles were prepared by 

partially substituting the non-radioactive H197AuCl4 with radioactive H199AuCl4. 

For the growth of 199Au-Au nanoparticles of 5 nm, 1000 μL of the aqueous 

suspension containing Au clusters was added to a solution containing 2 mL of CTAC (200 

mM), 2 mL HAuCl4 (0.5 mM), 1.5 mL AA (100 mM), and 69.9 MBq of H199AuCl4. The 

mixture was gently shaken for 2 min and allowed to react for 1 h. The as prepared 199Au-

Au nanoparticles were collected by ultrafiltration MWCO ≈ 100 K, Amicon, 10,000 g, 5 

min), and washed with 4 mL of ultrapure water before further use. 

For the preparation of 18 nm Au nanoparticles, 10 nm Au nanoparticles were used 

as seeds. In a typical synthesis, 320 μL aqueous suspension containing 10 nm Au 

nanoparticles was mixed with 2 mL CTAC (200 mM), 2 mL H2O, and 260 μL of AA (10 

mM). After gentle mixing, 4 mL HAuCl4 (0.5 mM) containing 81.6 MBq of H199AuCl4 

was dropwisely (at a rate of 2 mL/h) added into the mixture with the help of syringe pump 

under magnetic stirring. The as prepared 199Au-Au nanoparticles were collected by 

centrifuge (13,200 rpm, 10 min), and washed three times with of ultrapure water before 

further use. 

All the experiments involving the use of radioactive species were conducted under 

appropriate protection according to the guidance from the Radiation Safety Office of 

Washington University in St. Louis. 
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4.4.4 PEGylation of Au Nanoparticles 

Before the surface modification, the OPSS-PEG5000-DAPTA molecules were first 

synthesized by conjugating the DAPTA onto PEG NHS ester derivative of OPSS-PEG5000-

SVA with their primary amine group. In a typical synthesis, the OPSS-PEG5000-SVA was 

mixed with DAPTA peptides in DPBS at a molar ratio of 1:5 to react overnight at 4 ºC. 

The resulted mixture was used without further purification. The PEGylation was 

subsequentially conducted by incubating Au nanoparticles with a solution of a mixture of 

OPSS-PEG5000-DAPTA and HS-PEG5000-OMe (molar ratio = 1:3) or HS-PEG5000-Ome at 

a molar ratio of 1:100,000 (nanoparticle : PEG) for the DAPTA-conjugated Au 

nanoparticles and PEG coated Au nanoparticles, respectively. The conjugation was 

allowed to react at room temperature overnight on the shaker. Excess PEG species were 

removed by ultrafiltration (MWCO ≈ 100 K, Amicon, 10,000g, 5 min), and washed for 3 

times with 4 mL of ultrapure water. The purified nanoparticles were dispersed in saline 

(APP Pharmaceuticals, Schaumburg, IL) for animal study. 

The PEGylation of 18 nm Au nanoparticles was conducted by following a similar 

procedure described above, besides the centrifugation (13,200 rpm, 10 min) was used for 

purification instead of ultrafiltration. 

4.4.5 Characterization of Au Nanoparticles 

The TEM imaging was conducted with a Hitachi HT7700 microscope operating at 

120 kV to determine the size and morphology of Au nanoparticles. Radioactive samples 

were imaged after 90 days of decay. The UV-vis spectra were acquired using a Lambda 

750 spectrometer (Perkin-Elmer, Wellesley, MA). 



www.manaraa.com

 94 

4.4.6 In Vivo Biodistribution Studies 

Female BALB/c mice weighing 15−20 g were used to prepare the 4T1 tumor 

model. For each seven-week-old mouse, 5 × 106 cancerous cells were subcutaneously 

injected in 100 μL saline under the right front leg. The tumors were allowed to grow to a 

size of 200 and 300 mm3 in 8-10 d before the animal studies. In the biodistribution study, 

each mouse was injected with 100 μL saline containing 111−185 KBq of 199Au-Au 

nanoparticles via the tail vein. At series time points (1, 4, and 24 h post injection), the mice 

were sacrificed by cervical dislocation under anesthesia. Organs of interest were than 

collected, weighed, and subjected to γ counting using a Beckman 8000 gamma counter 

(Beckman, Fullerton, CA). The weight-normalized dosage was calculated as percentage of 

the %ID/g for each kinds of organ. 

All the protocols for animal studies were approved by the Washington University 

Animal Studies Committee. 

4.4.7 SPECT/CT Imaging 

At 24 h prior to the imaging, each of the he 4T1 tumor bearing mice were 

anesthetized with isoflurane and injected with 100 μL of saline containing 29.6 MBq of 

199Au-doped DAPTA-conjugated Au nanoparticles via the tail vein. At 24 h post injection, 

SPECT/CT scans were performed using NanoSPECT/CT (Bioscan, Washington, DC) The 

images for CT and SPECT were reconstructed by InvivoScope software (Bioscan, Inc., 

Washington, DC) With voxel size of 0.4 and 0.6 mm, respectively. 
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4.4.8 Autoradiography Studies 

After NanoSPECT/CT scan, the tumors were dislocated and frozen in optimal 

cutting temperature compound and sectioned into slices of 50 μm in thickness. The tumor 

slices were sealed to glass slides before subjecting to 2D autoradiography (InstantImager 

Electronic Autoradiography, Packard, Meriden, CT). 

4.4.9 Immunohistochemistry and Histology Quantification 

For the histochemistry assays, paraformaldehyde-fixed (24 h) and paraffin-

embedded samples were sliced into a series sections of 5 μm thick. Before the antibody 

staining, a series of xylenes and graded alcohols treatments were conducted for the 

deparaffinization and rehydration of specimens. Antigen retrieval pretreatment (10 mM 

Tris, 1 mM ethylenediaminetetraacetic acid, 0.05% Tween, and at pH = 9.0 for 10 min) 

was then conducted. To prevent nonspecific binding all the slides were treated with 0.3% 

H2O2 for 30 min, and blocking serum for 1 h (Vectastain, Vector Laboratories, Burlingame, 

CA). Antibody staining was then carried out by incubating a primary antibody (anti-CCR5, 

1:100 in blocking serum, Santa Cruz Biotechnology, Dallas, TX) at 4 °C overnight. After 

the staining of secondary antibody (Vector Laboratories) a horse radish peroxidase-based 

immunostaining kit (Vector Laboratories) was employed to develop a brown color. 

Counterstaining of nuclei was accomplished with hematoxylin for a blue color. Images 

were acquired with a light microscope (Leica Microsystems). Routine H&E staining was 

also performed on the slides to analyze the morphology of the tissue. 

  



www.manaraa.com

 96 

4.4.10 Statistical Analysis 

Prism software (version 6.04, GraphPad) was used for all statistical analyses. One-

way analyses of variance were conducted with a Bonferroni post-test between groups. 

Two- tailed student t-tests were conducted to determine the difference for individual group 

with a significance level of p ≤ 0.05. 
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CHAPTER 5. ARG-GLY-ASP CONJUGATED AU NANORODS 

FOR RADIO THERAPY 

In previous chapters, I described the fabrication of Au nanoparticle-based 

nanomedicine and their radiolabeling as well as surface modification. With the innovative 

radiolabeling of novel medical isotopes, I also demonstrated the targeted imaging of cancer 

and imaging guided photothermal therapy. In this chapter, I would further present our study 

on the nanoparticle induced radiosensitization and it underlying mechanism. I hope to 

provide the readership with deeper understanding on the underlying mechanism beyond 

the mere observation of therapeutic effect from nanomedicine. 

5.1 Introduction 

Radiotherapy is a kind of therapy that has been proofed to be effective in clinics. 

However, local failure is often observed after irradiation as a result of intrinsic and 

acquired resistance to radiation treatment by tumor cells. As demonstrated by recent 

studies, radiation would affect cell adhesion to the extracellular matrix (ECM) by 

regulating the receptors presented on cell membrane (e.g., integrins), in addition to the 

destruction of tumor cells.[1] Still, the damage caused by DNA damaging and apoptosis 

induction is often observed to have no significant selectivity in this approach. 

As a well-studied biomarker, integrin is known to contain a single alpha and a 

single beta chain that can obtain either an activated or non-activated conformation. With 

the combination of 18 alpha subunits and 8 beta subunits over 24 kinds of mammalian 

integrin have been known till recently.[2] A substantial research revealed that integrins, 
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such as αvβ3, play a critical role in the regulation of tumor progression, metastasis, as 

well as angiogenesis.[3, 4] As a common biomarker in cancer, the expression of αvβ3 has 

been found to be up-regulated in a variety of cells, including human malignant 

melanoma, breast cancer, and advanced glioblastoma, on the surface of both endothelial 

cells as well as certain tumor cells.[4] In the context of radiotherapy, αvβ3 integrin has 

been found to direct associated with the tumor radiosensitivity,[5] and their acquired 

radioresistance after irradiation through the upregulation of their expression.[6, 7] Thus 

the theranostics targeting integrin αvβ3 has attracted particular interest, as this biomarker 

could be used for inhibition of angiogenesis while lowing the resistance.[3] As a specific 

ligand of integrin, RGD sequence is presented in many kinds of ECM protein allowing 

the adhesion of cells to ECM via integrin. It could also efficiently promote cell adhesion 

and particle attachment. Upon the binding of RGD to integrin, an integrin-mediated cell 

adhesion would be activated by the signal transduction between the ECM and cells, and 

further influence the cell behavior such as proliferation, differentiation, apoptosis, 

survival, and migration.[8] Aiming at the targeting of αvβ3 integrin, cyclic RGD-

containing pentapeptides, have been widely studied as integrin inhibitor for enhanced 

radiotherapy of cancer.[9, 10] 

Though RGD peptides is expected to be widely useful as processing 

radiosensitizer, it is still critical to maintain a low level of adverse side effects while 

increasing the treatment efficiency. An ideal radiosensitizer should also have the 

capability to be coupled to a drug delivery system for increased specificity. Recently, 

there is an emerging trend in the development of Au nanoparticle-based nanomedicine 

with increased targeting efficiency through RGD conjugation. These novel nanoparticle 
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platforms could also be integrated with ligands to cancer biomarkers and traditional 

anticancer drugs for enhanced targeting and therapeutic effect.[11] Among the various 

kinds of Au nanoparticle, Au nanorods have been extensively studied as therapeutic 

agents and drug delivery vehicles for the accurate detection and elimination of cancer.[12] 

After years of development, Au nanorods hold good biocompatibility, suitable 

physiochemical parameters, and can be prepared at large batch with high uniformity. 

With appropriate surface modification, Au nanorods may exhibit excellent tumor 

targeting capability and good penetration through biological barriers.[13, 14] 

I would present our latest research on the clinical benefit of RGD-conjugated Au 

nanorods as effective radiosensitizer for the treatment of human melanoma. Possible 

mechanisms for the radiosensitization is also proposed and investigated. This research 

is hoped to bring new understanding to cancer biology and new hope to cancer patients. 

5.2 Results 

5.2.1 Cellular Toxicity and Uptake of RGD-Conjugated Au Nanorods 

Au nanorods stabilized in CTAB were commercially purchased with an average 

length of 44.44 ± 4.7 nm and average width of 15.10 ± 1.7 nm Figure 5.1a. As the surface-

coated CTAB holds high cytotoxicity and affects the further modification, a silica coating 

process was performed before further modification. The silica coating was conducted via 

a previously reported procedure to replace the surface capped CTAB.[15] The coating layer 

of silica was measured to have a thickness of ca. 31 nm under TEM (Figure 5.1b). The 

silica coated Au nanorods were further functioned with RGD peptides following a process 

previous reported.[16] The cell uptake experiment was conducted consequentially with 
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A375 melanoma cells to verify the cell uptake of RGD conjugated Au nanorods. After 1 h 

of incubation, RGD-conjugated Au nanorods were found both on the surface of cell 

membranes or in the cytoplasm as a result of integrin-receptor-mediated endocytosis 

(Figure 5.1c and d).[17, 18] The cell viability after the uptake of the RGD-conjugated Au 

nanorods was also assess with standard cell proliferation assay using MTT. As shown in 

Figure 5.2a, the cell viability of A375 cells showed a dose-dependent behavior, and the 

RGD-conjugated Au nanorods were slightly more toxic to cells than silica-coated Au 

nanorods (P < 0.05) at 48 h of incubation. The time-dependent cell proliferation assay was 

also conducted using 50 μg/mL RGD-conjugated Au nanorods or silica-coated Au 

nanorods for upto 48 h. No significant cytotoxicity was observed for both kinds of Au 

nanorods for upto 24 h (Figure 5.2b). 
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Figure 5.1. The morphology of as-prepared RGD-conjugated Au nanorods (shown as 

RGD-GNRs) and their cell uptake by A375 melanoma cells. (a) low magnification 

TEM image of RGD-conjugated Au nanorods. (b) high magnification TEM image of 

RGD-conjugated Au nanorods. The silica coating layer was measured to have a 

thickness of ca. 31 nm. (c and d) TEM images showing the A375 melanoma cells, 

showing the cell uptake of RGD-conjugated Au nanorods. The RGD-conjugated Au 

nanorods were mainly found in the cytoplasm. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3299204_ijn-7-915f1.jpg


www.manaraa.com

 105 

 

Figure 5.2. The cell proliferation assay using MTT. (a) The cell viability of A375 cells 

demonstrated a dose-dependent behavior with decreasing cell viability at high 

particle concentration. Data was collected and normalized to the control group (in 

absence of RGD-conjugated Au nanorods) at 48 hours. (b) The cell viability of A375 

cells demonstrated a time-dependent behavior with decreasing cell viability at longer 

incubation times. 

 

Figure 5.3. Radiosensitizing effect of silica-coated Au-nanorods or RGD-conjugated 

Au nanorods quantified by colony formation assay. A375 cells were treated with 50 

μg/mL nanoparticles for 1 h prior to the irradiation. Colonies of >50 cells were 

counted at 2 weeks post treatment. 

  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3299204_ijn-7-915f2.jpg
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5.2.2 Radiosensitization of Melanoma Cells 

To quantitatively compare the radiosensitizing effect of silica-coated Au nanorods 

and RGD-conjugated Au nanorods, a colony formation assay was employed to count the 

living cells at 2 weeks post treatment at 2 Gy. The survival rate of A375 cells was plotted 

and fitted to a dose-response curves as shown in Figure 5.3. A dose-modifying factor was 

derived for each kind of experimental condition with or without the addition of silica-

coated Au nanorods or RGD-conjugated Au nanorods. Both silica-coated Au nanorods and 

RGD-conjugated Au nanorods demonstrated an enhancement in radiosensitivity of A375 

cells to 6 MV X-rays with dose-modifying factor quantified as 1.14 and 1.35, respectively. 

In comparison to the control group, which had no nanoparticle, statistical significance was 

observed on both group with P < 0.05. From a one-way analysis of variance, the dose 

modification factor of RGD-conjugated Au nanorods was also significantly higher than 

that of the silica-coated Au nanorods and with P = 0.001. 

5.2.3 Enhanced Radiation-induced Apoptosis 

As shown in Figure 5.4, significant percentage of apoptosis cells were found from 

every treatment. However, the nanoparticles with or without RGD conjugation could not 

induce significant cell apoptosis in the absence of radiotherapy compared with the 

untreated control group (2.23% ± 0.42%, P < 0.05). However, cells treated with both RGD-

conjugated Au nanorods and radiation underwent significant cell apoptosis (15.10% ± 

0.96%), which is three and two times that from the groups treated with radiation or silica-

coated Au nanorods and irradiation (4.97% ± 0.83% and 7.67% ±0.31%, respectively). 
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5.2.4 Enhancement of Radiation-induced G2 Cell Cycle Arrest 

The radiosensitivity of tumor is also cell cycle-oriented, while cells in their G2/M 

typically holds higher radiosensitivity. As shown Figure 5.5, the treatment of silica-coated 

Au nanorods, RGD-conjugated Au nanorods, or radiation (6 MV X-rays,4 Gy) could 

elevated the percentage of cells arrested in their G2/M phase (35% ± 2.65%, 36.14% ± 

0.35%, and 40.9% ± 0.35%, respectively), in comparison with the control group (25.84% 

± 0.49%; P < 0.05). The combination of irradiation and RGD-conjugated Au nanorods was 

also shown to further increase this percentage to 46.5% ± 1.2%. A statistical significance 

was observed with P < 0.05 between the group received irradiation after RGD-conjugated 

Au nanorods incubation and the and single treatment groups. 
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Figure 5.4. Enhancement of apoptosis by radiation and combined therapy with RGD-

conjugated Au nanorods. A375 cells were incubated with either silica-coated Au 

nanorods or RGD-conjugated Au nanorods for 1 h prior to irradiation. The cells were 

quantified by flow cytometry with Annexin V and propidium iodide staining, at 24 h 

post treatment. (a–c) flow cytometry data showing the apoptosis in control cells and 

the cells containing either silica-coated Au nanorods and RGD-conjugated Au 

nanorods (50 μg/mL for 24 hours) without radiation. (d–f) flow cytometry data 

showing the apoptosis in cells receiving only irradiation or silica-coated Au nanorods 

and RGD-conjugated Au nanorods (50 μg/mL for 24 hours) prior to radiation. (g) 

Data from (a–f) presented in bar chart as the mean ± standard deviation (n = 3). 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3299204_ijn-7-915f4.jpg
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Figure 5.5 Enhancement of G2/M cell cycle arrest induced radiosensitization in A375 

cells. Flow cytometry were conducted at 24 h post irradiation to the A375 cells 

incubated with (ctr) DMEM, gold nanorods, silica-coated Au nanorods (50 μg/mL), 

or RGD-coated Au nanorods (50 μg/mL), without or with irradiation (6 MV X-rays 

with a dose of 4 Gy). (a) Percentage of different cell phases, presented in bar chart as 

the mean ± standard deviation (n = 3). (b) the corresponding flow cytometry data 

from (a). 

5.2.5 Integrin αvβ3 Expression Levels 

As a response to irradiation, the expression of αvβ3 integrin was found to be 

upregulated in a dose-dependent manner. As shown in Figure 5.6, RGD-conjugated Au 

nanorods could more effectively (P < 0.05) suppress the radiation induced expression of 

αvβ3 integrin relative to the silica-coated Au nanorods, which did not significantly affect 

the expression of αvβ3 integrin.  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3299204_ijn-7-915f5.jpg
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Figure 5.6. Suppression of expression level of αvβ3 integrin. (a) The flow cytometry 

data showing the expression level of αvβ3 integrin. The spontaneous and irradiation 

induced expression of αvβ3 integrin were suppressed by RGD-conjugated Au 

nanorods (50 μg/mL) upon irradiation. The cells were stained with anti-integrin αvβ3 

antibody (LM609) or isotype-matched control antibody (DD7) at 24 h post treatment. 

(b) The expression level of αvβ3 was quantified with specific fluorescence intensity and 

plotted into bar chart as the mean ± standard deviation (n = 3). 
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5.3 Discussions 

Human melanoma is well known to possess high degree of radioresistance that 

compromises treat effect. So the development of new radiosensitizer for improved 

treatment effect is of great interest and clinical benefit. In this current work, I presented the 

RGD-conjugated Au nanorods as novel radiosensitizers that can effectively target αvβ3 

integrin. 

As the capping agent and colloidal stabilizer, CTAB is typically needed for the wet 

chemistry synthesis of Au nanorods. However, their severe cytotoxicity could always be 

an issue in its biomedical application. One of the possible solution is to coat the surface of 

Au nanorods with silica through the chemical deposition. The surface modification strategy 

of silica coating has been reported to have low cytotoxicity with good colloidal stability, 

which is ideal for surface modification of Au nanorods.[20, 21] Along with the outstanding 

biocompatibility, silica was also reported to be easily modified for various surface 

properties. In that case, RGD peptides could be readily conjugated to the surface of silica-

coated Au nanorods for improved targeting efficiency and internalization by cells. With 

the presence of RGD peptides, Au nanorods could be readily internalized via receptor-

mediated endocytosis and be accumulated with in the endosomes. In that way, the treatment 

effect could be limited to the cancerous cells, leaving the healthy cells, except for 

endothelial cells, unaffected.[22] 

In the present study, our results validated the internalization process through 

integrin αvβ3-receptor-mediated endocytosis. And the internalized RGD-conjugated Au 

nanorods could greatly enhance the treatment effect of radiotherapy with a dose 
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modification factor of 1.35. The use of RGD-coated Au nanorods was found to induce 

G2/M arresting in A375 cells, and this enhancement could be added on top of the effect 

from radiation, giving out a higher percentage of cells arrested in their G2/M phase. As the 

cancerous cells have been testified to have a higher radiosensitivity in their G2/M phase 

than in the G0/G1 or S phase,[23] a increased radiation-induced cytotoxicity and therapeutic 

effect were observed from the group of cells receiving both RGD-coated Au nanorods and 

radiation. At the same time, the increased cells in their G2/M phase could also explain the 

increase in vulnerability to radiation-induced DNA damage, as an increased expression of 

the DNA repair protein, γH2AX was recently found to be associated with radiotherapy.[24] 

The radiosensitizing effect induced by the incubation of RGD-conjugated Au 

nanorods could also be explained by the inhibition of radiation induced αvβ3 integrin 

expression. In our experiment, A375 melanoma cells were found to have an upregulated 

expression of αvβ3 integrin after irradiation, comparing to their untreated counterparts. 

Through the flow cytometry data, an inhibition was found to the expression of αvβ3 integrin 

post treatment on the cells incubated with RGD-coated Au nanorods. It has been reported 

that a number of pathways in melanoma cells were closely associated with the resistance 

to radiation, one of which involves the activation of integrin. The integrin on the surface 

of cancerous cells could mediated the adhesion to ECM and the biding of growth factors 

that greatly impact the survival rate and radioresistance.[25] Integrin take effect through a 

pathway similar to the pathways triggered by growth factors.[26] Some research also showed 

a intimately interplay between αvβ3 and vascular endothelial growth factor receptor 2 on 

the activation of cellular response.[26, 27] The upregulation of vascular endothelial growth 

factor receptor 2 was also observed to induce a specific radioresistant effect in the αvβ3-
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positive endothelial cells.[28] On the other hand, the upregulation of αvβ3 expression in 

response to irradiation could activate Akt, a key antiapoptic protein kinase, thus giving out 

a survival signal against radiation-induced destruction forming defense mechanism.[9] This 

helps to explain the acquired radioresistance of tumor cells after radiotherapy. The 

incubation of RGD-conjugated Au nanorods could inhibit the expression of αvβ3 integrin, 

and reduce the radioresistance after radiotherapy. 

In addition to the improved therapeutic effect from the reducing of the 

radioresistance, RGD-conjugated Au nanorods could also minimize the adverse side 

effects to health tissue with their high selectivity to αvβ3 integrin. With the excellent 

targeting effect, the increased absorption of radiation energy could preferentially take 

effect in the cancerous cells when the RGD-conjugated Au nanorods were internalized.[24, 

29] It has been realized that the introduction of material with high Z number could induce 

more photoelectron through the photoelectric effect causing more damage to the tissue with 

the resulted radicles.[30] Though the therapeutic effect was typically observed to be 

proportional to the dose of irradiaion, these results were mostly gathered from low-energy 

radiation as Au preferentially absorb kilovoltage X-rays. Megavoltage X-rays, which are 

widely used in clinics, are particularly suitable for the treatment of deep-seated tumors. 

And the radiosensitizing effect of megavoltage X-rays was a combination of multiple effect 

beyond just the Z number of material. In a recent study, Roa et al reported that the 

incorporated Au nanorods could affect the cell cycle of cancerous cells and facilitate the 

treatment.[31] This result is also in consistence with our observation. It is also proposed that 

the increased therapeutic effect of Au nanorods incorporation was the result of high level 

of intracellular reactive oxygen species, which are induced by irradiation and take effect 
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by elevating the level of oxidative stress.[32] An increased level of apoptosis could also be 

observed in consistent with the mechanism proposed as such. A recent work conducted in 

DNA plasmid models indicated that the sensitization was induced by the direct interaction 

between Au nanorods and megavoltage X-rays due to short-range electrons produced by 

the photoelectric effect.[24] The production of low-energy electrons and free radicals could 

cause more damage to DNA than the radiation alone. Our research validated the increased 

apoptosis and mitotic death in A375 cells, when the cancerous cells were incubated with 

RGD-conjugated Au nanorods. 

In this chapter, I demonstrate the great potential of RGD-conjugated Au nanorods 

for the radiosensitization of cancerous cells on radiotherapy. Upon the irradiation of 6 MV 

x-ray, a dose-enhancement factor of 1.35 was observed on A375 melanoma cells. I further 

explored the underlying mechanism of the radiosensitization. It is revealed that the 

enhancement of treatment effect was mainly the result of cell cycle arresting on the G2/M 

phase as well as the inhibition of radiation-induced αvβ3 integrin expression. 

5.4 Experimental 

5.4.1 Preparation of RGD-Conjugated Au Nanorods 

The Au nanorods were commercially purchased from Sinopharm Chemical 

Reagent Co (Shanghai, China). The Au nanorods was stabilized in CTAB solution as they 

are prepared with the seed-mediated growth approach.[33, 34] The silica coating was then 

conducted via the hydrolysis and condensation of tetraethyl orthosilicate.[35] In a typical 

process, 20 mL of the stock solution containing Au nanorods was first centrifuged and 

redispersed into equal volume of ultrapure water (Millipore, Billerics, MA). After adjusting 
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the pH to 10–11, 1.1 mL of tetraethyl orthosilicate ethanol solution (10 mM, J & K 

Chemical Ltd, Shanghai, China) was introduced to 20 mL of the suspension containing Au 

nanorods. After 10 h of vigorous stirring at room temperature, a uniform silica coating 

layer of about 31 nm was found on the surface of the Au nanorod. Excess reactant was 

removed by centrifuge, in which the particles were washed with ultrapure water and 

ethanol for several times. The product was redispersed in ultrapure water before further 

modification. For the active targeting of αvβ3 integrin, cycle RGD peptides (Shanghai, 

China) were conjugated to the Au nanorods. Following the standard (1-Ethyl-3-(3-

Dimethylaminopropyl)Carbodiimide Hydrochloride)/ N-Hydroxysuccinimide 

(EDC/NHS) reaction reported by Johnsson et al.[16] After 48 h of incubation, RGD-

conjugated Au nanorods were washed by centrifugation at 6000 rpm for 15 minutes. The 

RGD-conjugated Au nanorods were then dispersed in DMEM (Hyclone, Carlsbad, CA) 

and stored at 4°C before further use. 

5.4.2 Cell Lines and Culture 

The A 375 human melanoma cells were obtained from the Shanghai Institute of 

Cell Biology and Chinese Academy of Sciences (Shanghai, China). Cell culture was 

conducted using DMEM supplement with 10% fetal bovine serum (Hyclone) at 37 °C in a 

humidified atmosphere containing 5 % CO2. 

5.4.3 TEM Analysis of Cells with Internalized Au Nanorods 

For the preparation of cells for TEM imaging, A375 cells were washed three times 

with DPBS and fixed with 2.5% glutaraldehyde and 1% osmium tetroxide for 6 h and 2 h, 

respectively, after incubation with RGD-conjugated Au nanorods. Subsequentially, the 

https://www.thermofisher.com/order/catalog/product/22980?ICID=search-product
https://www.thermofisher.com/order/catalog/product/22980?ICID=search-product
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cells were dehydrated in ethanol, and embedded in agar resin (Agar Scientific, Stansted, 

Essex, UK). The sample was sections into slices of 60–70 nm thick and placed on copper 

grids. Lead citrate staining was also performed before visualized under TEM (Philips 

CM120). 

5.4.4 Cellular Proliferation Assay 

A standard MTT assay was performed to quantify the cytotoxicity of nanoparticles. 

In a typical experiment, A 375 melanoma cells were cultured in 96-well plate. Au nanorods 

with or without RGD conjugation was introduced at a series times to desired final 

concentration. Subsequentially, 15 μL of MTT stock solution (5 mg/mL; Sigma-Aldrich) 

was added to each wall and were allowed to incubate with the cells. After 4 h of incubation, 

the cells were then washed twice with DPBS. Then, 100 μL of DMSO (Sigma-Aldrich) 

was added to each wall to dissolve the formazan crystals. The absorbance at 570 nm were 

taken by plate reader and normalized to the untreated control group. 

5.4.5 Irradiation 

The radiotherapy was carried out by irradiating the cultured cells with 6 MV X-

rays from linear accelerators (Siemens, Münich, Germany). During the treatment, the 

accelerator was set at a dose rate of 3 Gy/minute, with 1.5 cm bolus as compensator. 

5.4.6 Clonogenic Assay 

Prior to the irradiation, Au nanorods with or without RGD conjugation were added 

to the cells (5 × 105/well) in 6-well plate to a final concentration of 50 μg/mL. After 1 h of 

incubation, the nanoparticles were replaced with fresh DMEM and subjected to radiation 
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therapy under accelerator. The cells were digested and re-seeded into 6 wall culture plate 

which allowed the living cells to seed and grow into colonies. After another 2 weeks of 

culture, the living cells were stained with 0.4% crystal violet. Colonies with more than 50 

cells were counted under fluorescent microscope for the calculation of the surviving 

fraction. The data was then fitted into a LQ model with Graphpad Prism software (version 

5.0). Specifically, survival fraction at 2 Gy was used to quantify the radiosensitizing effect 

by calculating the dose-modifying factors. 

5.4.7 Cell Cycle and Apoptosis Assays by Flow Cytometry 

The sample for cell cycle analysis was prepared by fixing A375 cells (106 cells/mL) 

in 95% ethanol at −20 °C for 24 h, and stained with propidium iodide (50 μg/mL) in DPBS 

for 15 min at 4°C. Cellular DNA content was obtained using FACSCalibur flow cytometer 

(Becton-Dickinson, Franklin Lakes, NJ) and the cell cycle data was analyzed using 

multicycle system 2.0 software. In the apoptosis study, living cells were stained with 

Annexin-V-fluorescein isothiocyanate/propidium iodide (Invitrogen) before subjecting to 

flow cytometry measurement. 

5.4.8 Integrin αvβ3 Analysis 

A375 cells were stained with antihuman integrin αvβ3 mAb LM609 (Millipore, 

Shanghai, China) or isotype-matched control antibody DD7 (Millipore) before 

quantifiaction with flow cytometry. The staining was conducted by incubating mouse 

antihuman integrin αvβ3 mAb LM609 or isotype-matched control antibody DD7 with 200 

μL DPBS suspension containing A375 cells (106 cells/mL) in the presence of 0.2% bovine 

serum albumin at 4 °C. After 45 min of incubation, the cells were washed three times with 
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DPBS and subject to flow cytometry (FACSCalibur) measurement. Fluorescence index 

were obtained by normalizing the mean fluorescence obtained with LM609 to that from 

the control group of DD7.[36] 

5.4.9 Statistical Analysis 

One-way analysis of variance was performed with SPSS statistical software (v13.0, 

SPSS Inc, Chicago, IL) to compare the means between two test groups. The test was set 

with a P value ≤0.05 for statistically significant. 
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CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS 

6.1 Summary 

In this dissertation, I explored the potential of using engineered Au nanoparticles with 

novel morphology and active targeting capabilities as theranostic agents for molecular imaging 

and cancer therapy. Various modifications were made to the nanoparticles and radiolabeling 

chemistry aiming to improve the functionality in their niche applications. These works 

improved the current understanding to cancer nanomedicine by inventing new kinds of 

nanomaterials, using new radio isotopes for molecular imaging, as well as developing new 

methodology for radiolabeling and biomedical assays. To summarize, I conclude the 

dissertation by highlighting the innovation and potential impact of the research works 

presented in this dissertation. 

The whole work presented in this dissertation was dedicated to the integration of 

molecular imaging technology and the latest nano-chemistry with innovation on four aspects: 

1) Developed new kinds of Au nanoparticles with well controlled tripod 

morphology (chapter 2 and 3): In these researches I prepared the PdCu tripods as the templets 

to grow PdCu@Au tripods with uniform size and morphology. This novel kind of nanoparticle 

possess merits like tunable LSPR peak, large absorption to extinction ratio, large two-photon 

luminescence cross section. The merits of Au nanoparticles are often associated with the 

anisotropic structure. According to the current research, the anisotropic growth of nanoparticle 

is hard to induce and control. Though the approach to fabricate Au nanoparticles of anisotropic 

morphologies with the help of templet materials has already been demonstrated, this technique 

is still restricted by the limited choices of templet materials. As the number of arms on Au 



www.manaraa.com

 123 

nanoparticles can hardly be controlled, the tripod shaped nanoparticles were seldomly reported 

but of great interest to biomedical applications. 

2) For the first time, introduced Au-199 as a novel medical isotope for SPECT 

imaging (chapter 4): The imaging qualities of current nuclear imaging technologies are largely 

affected by the physical properties of the medical isotopes. Either the choice of technology, 

resolution limit, dosage preparation, treatment procedure, as well as the associated side effects 

are all closely related to the medical isotopes. I demonstrated the use of Au-199 as novel 

SPECT isotope with the tumor bearing animal model under the exist settings on commercial 

SPECT. The corresponding radiolabeling technique was also developed for Au-199 with good 

stability. The introduction of a new medical isotope would open up new possibilities to develop 

better radioactive tracer for improved imaging quality and radio safety. 

3) Improved the radio labeling technology by incorporating radioactive isotopes 

(Cu-64, Au-199) into the lattice of nanoparticles (chapter 2 and 4): I demonstrated the 

chemistry to fix isotopes like Cu-64, Au-199 into the lattice of PdCu@Au tripods and Au 

nanospheres respectively. By incorporating radioactive isotopes into the lattice of Au 

nanoparticles, the labeling stability could be elevated. This technology does not require the use 

of additional reagents and will not cause undesired changes to the properties of nanoparticles. 

In comparison, the current radioactive labeling technology typically requires the use of 

chelating agents or specially designed chemistry to bond isotopes to the surface of 

nanoparticles. However, the binding stability of isotopes is always an issue resulting in high 

background noise and biased biodistribution profiles. With the conjugation of chelating agents, 

the designed surface properties of nanoparticles would also be altered. Thus, the new 

radiolabeling technology demonstrated superior potential for the application in molecular 

imaging.  
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4) Developed new targeting technology for improved biodistribution of 

nanoparticles (chapter 2, 4): This research established a new cancer biomarker and the 

corresponding targeting technology for the in vivo targeting of triple negative breast cancer. I 

demonstrated that CCR5 could be employed as biomarkers to target triple negative breast 

cancer with DAPTA peptide-conjugated Au nanoparticles in vivo. 

Our works developed new materials with novel properties and targeting technology 

that can help to better understand the biology of cancer, improving the diagnosis and therapy. 

The successful completion of these researches would have the following impacts: 

1) Provide a better understanding to the biology of cancer (chapter 5): 

Radiotherapy is one of the primary approaches in clinical cancer therapy. However, as a result 

of the poor selectivity between health tissue and cancer lesion as well as the adverse side effect, 

the therapeutic effect of radiotherapy is often limited. The means of sensitizing cancer cells to 

radiation and lowering the dose requirement is still under research. The RGD peptide-

conjugated Au nanorods developed in this dissertation could effectively sensitize the human 

melanoma cells by downregulating the expression of radiation-induced αvβ3 and increasing the 

arresting of cells in G2/M phase. The important role of radiation-induced αvβ3 expression was 

also testified. With this research, αvβ3 integrin was verified to be an effective therapeutic target 

in radiotherapy, in addition to its role of tumor angiogenesis biomarker currently understands 

by scientist.  

2) PdCu@Au tripods could serve as a new platform for wider application in 

cancer theranostics with their novel tripod structure and excellent optical properties (chapter 2 

and 3): The development of nanoparticles with tripod structure could bring new possibilities to 

the in vivo application for improved biodistribution. And with the newly developed 
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morphology, PdCu@Au tripods were found to exhibit outstanding optical properties like 

readily tunable LSPR peaks in NIR region, bright two-photon luminescence that could be 

utilized in both cancer diagnostics at in vitro and in vivo level. With their large absorption cross 

section facilitating the photothermal generation, PdCu@Au tripods could serve as the nano-

transducer to treat cancer with photothermal therapy. With these properties, PdCu@Au tripods 

possess the capability to be a versatile platform for various biomedical applications. 

6.2 Future Directions 

This dissertation was dedicated to the integration of molecular imaging technology 

and the latest nano-chemistry with focuses on nanoparticle engineering, incorporation of 

novel isotope, as well as the development of new tumor targeting technology. Work 

accomplished in this dissertation made important progresses towards the ultimate goal of 

clinical application using Au nanoparticle for cancer theranostics. To achieve this goal, 

plenty of effort still needs to be devoted. 

One of the future direction is to increase the clinical benefit of Au nanoparticle by 

the integration of more theranostic functions. As the decision of whether to put a 

nanomedicine into clinical use has essentially become a tradeoff between the clinical benefit 

and the side effect, we combine the clinical benefit of individual diagnostic and therapeutic 

modalities by integrating these capabilities into one single kind of Au nanoparticle. The 

further integration could follow the same strategy demonstrated in this work to put nuclear 

imaging modalities (PET, SPECT), photo-luminescence (fluorescence imaging, two-photon 

luminescence imaging), photoacoustic generation, and photothermal generation capabilities 

onto the same platform. As such we could achieve more clinical benefit with the same 

injected dose. At the meantime, with the help of multi-modality imaging we could also 
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monitor multiple cancer biomarkers simultaneously. It is expected to provide us with a 

comprehensive understanding to cancer biology. 

Another direction is to improve the biodegradability of Au nanoparticles by 

modification and innovation on the nanoparticle synthesis. Though the good short-term 

biocompatibility and stability of Au nanoparticles have widely been demonstrated. The 

study on their long-term stability and toxicity is still missing. Their fate in biological system 

and final elimination from body is still uncertain. This uncertainty greatly hampers the 

application of Au nanoparticles in clinical trials. At this point, the good stability of Au 

becomes a unfavorable factor that compromise the biodegradability. Possible solutions 

should trace back to the initial design and fabrication of Au nanoparticle. Here we highlight 

two potential approaches in the following context with the hope to extend the works in this 

dissertation. 

In one approach, Au nanoparticles could be synthesized as alloyed particles for 

better degradability. The degradation of other metal contents could cause the dealloy of 

metal contents breaking the integrity of nanoparticles. In a recent research, Liu and co-

workers reported the synthesis of Cu-64 doped CuAu alloyed nanoparticles, and 

demonstrated their PET imaging capability as well as the high clearance.[1] The as prepared 

CuAu alloyed nanoparticle has a large Cu contents, which is tunable by varying the feeding 

ratio of different contents, of upto 80%. At 48 h postinjection, upto 38.4% of the injected 

dose were observed in the feces for the PEG (MW ≈ 1000) coated Au nanoparticles, 

demonstrated the existence of high hepatobiliary clearance. It is known that hepatocyte is 

the type of cell that is responsible for the clearance of Cu2+ and the biliary excretion.[2] The 

clearance of CuAu nanoparticles is most likely the result of hepatocytes uptake. It is also 
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reasonable to assume that the nanoparticles have lost their structural integrity after being 

processed by the hepatocytes, as a large portion of the Cu contents are excreted. 

Another alternative approach is to assemble large nanoparticles from small Au 

nanoparticles or Au clusters, to allow the final clearance through the renal clearance process. 

In a recent work, Chan and co-workers reported the assemble of nanoparticles with the help 

of DNA linkers.[3] Recently our group also developed the technology to encapsulate phase-

change material (PCM), e.g. stearic acid, tridecanoic acid. The florescent Au clusters could 

maintain their florescent property after the encapsulation. This novel kind of nanoparticle is 

expected to be biodegradable and clearable as the Au clusters possess the capability to be 

processed by renal clearance.  

 

Figure 6.1 a) the fluorescence spectra of Au cluster enveloped PCM nanoparticles; 

b) the size distribution of Au cluster enveloped PCM nanoparticles measured by 

dynamic light scattering. 

Following these directions, Au nanoparticle could obtain more merits with less 

side effects. And their clinical benefit could outweigh the side effects making them 

clinical viable as nanomedicine. The successful development of Au nanoparticle-based 

nanomedicine is expected to bring breakthroughs to the next generation cancer medicine. 
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